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Parallel manipulators, which consist of two rigid bodies (a base and a platform)
connected by six serial kinematic chains (connectors), offer distinct advantages when
compared to their serial counterparts. The motion of the platform with respect to the base is
controlled by the displacement of the six parallel connectors which generate a very stiff and
accurate manipulator capable of handling high payloads with minimal positioning errors.
These characteristics have generated great interest in the use of this type of manipulator in
applications such as machining processes and automated assembly operations.

It is clearly desirable to develop a comprehensive dynamic model for effectively
designing and controlling the parallel manipulators.

The major objective of this research is to derive explicit equations of motion for parallel
manipulators. This will provide the means to understand their dynamic behavior and enable
the design of more efficient devices capable of fast and accurate motions while handling
heavy payloads. As far as the author is aware, this is the first time the explicit equations of
motion have been derived (as opposed to numerical solutions). They were derived using
Kane’s Method which proved to be well suited to the intricate kinematics of parallel
manipulators, and verified with the Newton-Euler formulation. Subsequently, the
equations were used for a inverse dynamic simulation, which calculated the actuator forces

vil



required for producing a desired motion of a given design whilst supporting a workpiece in
a machining operation. Various geometric parameters, inertial properties and motion
profiles were used for testing in order to understand some of the effects on the dynamic
behavior.

The equations of motion indicate a high degree of coupling between the connectors
caused by the gravitational, tangential, Coriolis and centrifugal accelerations acting upon
the system. A most important result of the inverse dynamic simulations is that even for
feed rates in excess of the limits of existing technology (1200 inches / min ), the only
significant coupling was due to gravity; the other coupling effects were negligible. This
suggests the possibility of using mass balancing to reduce the coupling effects between the

connectors and in the process creating faster and more accurate parallel manipulators.



CHAPTER 1
INTRODUCTION

Manipulators or robots can be classified according to the type of kinematic chain used
for their implementation. Serial manipulators are based on open kinematic chains such as
the 3 degree-of-freedom manipulator shown on the left hand side of figure 1.1. Parallel
manipulators are based on closed kinematic chains such as the 3 degree-of-freedom system
shown on the right hand side of Figure 1.1.

Serial manipulators generally have long reach, a great degree of dexterity, cover a large
workspace and can enter small spaces among other advantages. However, serial
manipulators have low stiffness and highly coupled nonlinear dynamic behavior, specially
for high speed and high payload applications. The main reason for these limitations is the
that the serial manipulator is a chain of cantilever type structures, where the compliance and

positioning errors are accumulative effect of the individual joints.

4 X

Figure 1.1 - Serial and Parallel Manipulators
1
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Figure 1.2 - Spatial Parallel Manipulator

In parallel manipulators (see Figure 1.2) the links act in parallel, generating a very stiff
and accurate manipulator which can carry a high payload with minimal positioning errors.
On the other hand, parallel manipulators cover smaller work spaces and are less dexterous
than the serial manipulators. The particular nature of the parallel manipulator has generated
great interest in robotic applications where high loads and precision are required such as in
machining processes and automated assembly operations. The most typical parallel
manipulator is the Stewart Platform [1] which consists of two rigid bodies connected by six
linear parallel actuators. The motion of one of the rigid bodies (namely the platform) with
respect to the other (the base) is controlled by the displacement of the six linear actuators.

1.1 Previous Work

The parallel manipulator presents a different set of problems than the serial
manipulators. As an example the inverse kinematic analysis is simple to determine

compared to the forward kinematic analysis problem, which is the opposite with serial



manipulators. The inverse and forward kinematics of this type of manipulators has been
studied [ 2, 3, 4] in kinematics . Some general design guidelines have been developed by
E.F. Fichter [5, 6]. The inverse dynamic analysis of the Stewart piatform has been done
using the Newton-Euler formulation [7, 8] and the Lagrange formulation [9, 10].
Although in all these cases the explicit equations of motion have not been derived,
numerical solutions have been developed and used for the dynamic analysis.

Control systems have been developed and tested for Stewart platforms carrying out
simple operations [ 9, 11, 12]. In these cases the dynamic behavior has been neglected,
either by claiming that its not significant or that the error introduced by doing so can be
corrected by the control system. These assumptions are valid for slow motions and small
payloads. As the platform moves faster, the dynamic effects of the system will become
more significant. For higher payloads, the links must be stiffer and the actuators stronger.
This will increase the inertial parameters which can increase the dynamic effects on the
system. Therefore designs and control systems based on the assumption that the dynamic
behavior of the system is not relevant are going to be faulty and can not be used
successfully in future applications.

The techniques developed up to now in the areas of dynamics and controls are adequate
for analyzing existing manipulators but not adequate enough for designing platform based
manipulators. In order to design platforms with good dynamic performance, the
analytical equations of motion are required. These equations allow the designer to examine
the effects of different factors upon the dynamic behavior of the system such as the
geometry, link dimensions and inertial properties. This understanding of the dynamic
behavior is difficult to obtain by just using numerical solutions. The explicit equations of
motion also are required for designing control systems that will improve the dynamic
performance of the parallel manipulator.

The idea of using the equations of motion of the manipulator for improving the design
and developing high performance control systems has been done successfully in the area of
serial manipulators by H. Asada et al.[13]. The result of this research has been the
development of the high performance direct -drive serial manipulators [14].



1.2 Objectives

The designer interested in developing a platform based manipulator can usefully employ
the research performed to analyze a given device. A set of manipulator parameters can be
determined by a trial and error process using the actual level of knowledge. However, this
process can be very time consuming and may produce a manipulator that is not optimal for
the given application. The ultimate objective of this research is to develop an efficient
computer-based design and analysis tool for parallel manipulators.

1.2.1 Dynamic Modeling

The primary main objectives of this project are to determine the analytical dynamic
model for parallel manipulators and develop a dynamic simulation software. This
simulation will be the basis for the computer base design / analysis tool for parallel

manipulators. This model can be used for the forward dynamic analysis where the

Manipulator
Spec1ﬁ<nnons

Input Foward Resultant
Forces Analy51s Motion

Figure 1.3 - Forward Dynamic Analysis

Manipulator
Specifications
] Inverse
Desired . Requi
. Dynamic _. equired
Motion = Analysis Forces

Figure 1.4 - Inverse Dynamic Analysis
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loads are applied to the system and the resultant motion is determined as shown in Figure
1.3. The manipulator specifications consist of the dimensions, the geometry, the inertial
parameters and other parameters used for describing the system. These wiil be discussed
in detail in Chapter 2.

Most important is the use of the model for the inverse dynamic analysis of the parallel
manipulator. In this case the desired motion is specified and the forces required to generate
this motion are determined as shown in Figure 1.4. The inverse dynamic analysis is the
tool that a designer would use to determine if a given manipulator or a proposed design is
capable of generating a desired motion. This analysis can also be used to determine the
effects of changing platform specifications on the required forces which is also useful for

the design process.

1.2.2 Testing

The second objective of this work is to use the dynamic simulation for testing some
manipulator designs. This will enable the designer to gain some basic insight of the
dynamic behavior of the system and its relation to different system parameters such as

geometry and inertia.

1.3 CAE Tool for Parallel Manipulators

Parallel manipulators have in the main been used as flight simulators for training pilots
and for rides in theme parks such as Disney World. They have many other potential uses
in different areas which have not been explored yet. The development a Computer Aided
Engineering tool for parallel manipulators, such as that shown in Figure 1.5, will allow
designers to determine the appropriate design of a platform based manipulator according to
the desired application. The dynamic simulation, which is the immediate objective of this
research, is one of the major building blocks for such a tool. The designer or user of this
CAE tool provides the input through the description of the desired motion and task, and the
workspace requirements. This information is used by the Manipulator Design Module,

shown in Figure 1.6, to determine some possible geometries and manipulator parameters



user input user input

motion & task workspace
planning specifications
Manipulator Design Module

modify

Actuator Manipulator
Requirements Design

Control System Design Module

Final Manipulator Design

Figure 1.5 - CAE tool for Parallel Manipulators

by the Geometry Selection and Connector Design submodules. The applied loads are
determined by the Load Analysis submodule using the motion planning information and the
proposed geometry. Finally the Inverse Kinematic and Inverse Dynamic submodules are
used to determine the actuator requirements.



Workspace Motion / Task

Specifications Planning
- |

Geometry

Selection

Connector Load
Design Analysis

manipulator
configuration
and dimensions

component selection
and leg dimensions

external
forces & torques

positions,
velocities &
accelerations

INVERSE DYNAMICS

actuator requirements
Figure 1.6 - Manipulator Design Module

If the actuator requirements meet the design specifications, the software invokes the
Control System Design Module shown in Figure 1.7. This module uses the manipulator
design generated in the Manipulator Design Module to determine the controller parameters
using the Manipulator Control System submodule. Then the Forward Dynamics and
Forward Kinematics submodules use the controller design and the actuator requirements to

determine the resultant motion. This motion is then compared with the desired motion to
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v

Resultant Motion
Figure 1.7 - Control System Design Module

determine whether the manipulator design is satisfactory or in the best case the optimum

design.

1.4 Research Qutline
As mentioned earlier, the development of the CAE tool for parallel manipulators is the
ultimate objective of a research effort and this project is one of the initial phases. The
objective of this research is to develop the equations to be used in the inverse and forward

kinematics, and the equations of motion for the inverse and forward dynamic analysis.



The first step required for deriving the equations of motion is to develop a
comprehensive lumped parameter model of the manipulator. In all the previous research
into modeling {8, 9, 10, i1} simpie connector models have been empioyed. Although
adequate for a basic dynamic analysis, these models are not good enough for complex
systems such as those required for implicit force control and for high frequency /
disturbance rejection applications. The objective here is to develop a complete lumped
parameter model which includes the effects of friction and compliance which can become
significant factors in advanced applications. The lumped parameter model should be as
comprehensive as possible in order to anticipate the needs of the designer and at the same
time not overly complicated such that it would add unnecessary computational overhead.

The second step is to perform a complete inverse kinematic analysis. This analysis must
generate analytical expressions that relate the motion of the platform to the motion of the
connectors (position, velocity and acceleration). This analysis must also generate the
equations for describing the motion of the platform.

The third step is to perform a complete force/torque analysis of the manipulator. This
analysis determines the relationships between the externally applied loads, gravity, the
actuator forces, the connector elements and the inertial motion of the platform.

At the outset the most important step is to determine the equations of motion for the
system using the lumped parameter model, the kinematic analysis, and the force/torque
analysis. One important issue is the selection of the formulation method [15] (Newton-
Euler, Lagrange, ...). The formulation method will determine the difficulty of the deriving
the equations of motion and the possibility of making mistakes in the derivation.

Once the equations of motion are derived, the dynamic simulation software can be
developed and tested using different manipulator designs and desired motions. This will
provide some useful insight of the dynamic behavior of the system and demonstrate that it
is an important component of a future CAE tool for parallel manipulators.



CHAPTER 2
SYSTEM LUMPED PARAMETER MODEL

In most of the dynamic models for parallel spatial manipulators, the platform is
assumed to be a rigid body with distributed mass; and the connectors are considered to be
rigid massless bodies that apply forces to the platform as shown in figure 2.1. Although
this approach can be considered a good first approximation, it does not provide a complete
picture. Most of these models do not specify the minimum connector-to-platform inertia
ratio at which the mass of the connector be considered neglible, nor the minimum
connector stiffness values required to consider the connector infinitely rigid. In order to
obtain proper results with such a simplistic model, the connectors would have to be
carefully designed so that they are lightweight and extremely rigid. This causes the system
to be complex and costly. Therefore the advantage of using a simplistic model may be
outweighed by the increase of the design effort and costs.

An alternate approach is to assume that the connectors do have some inertia and
compliance that can affect the system’s dynamic performance. The use of a more complete
lumped parameter model for the connector will increase the modeling complexity. The
additional modeling effort will be compensated by decrease in the design effort and the
increase in the system’s actual performance. In this chapter more realistic connector
models will be developed by including factors such as the actuator’s inertial effects and
friction; and the leg compliance. The goal of this chapter is to develop realistic lumped
parameter models for the dynamic analysis of parallel manipulator. These models must
describe the dynamic behavior of the system without being too complex.

10
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base

~Jr

Figure 2.1 - Spatial Parallel Manipulator with rigid and massless connectors

AEa=MeE

where F , is the actuator’s force, and E is the displacement of the mass of the connector as

shown in Figure 2.2. The inertial effect is caused by this mass is compounded by the fact
that it is also rotating. In this case the actuators will also have to generate the additional
forces to cause the rotation of these connector masses. The rotation of this mass will

require a normal acceleration term since the body is rotating; and a Coriolis acceleration
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base
coordinate
frame

Figure 2.2 - Connector model with the actuator mass

term since the body is translating and rotating at the same time

A.normalr'E(_(lQ)z; ;A.coriolis=2F_4xQ

where w is angular velocity vector of the connector. The manipulator will also store more

kinetic energy when the connector masses are included. The actuators will have to exert
more force to speed up/slow down the system since more energy must be added/removed
from the system.

In the parallel manipulator system, the actuators will increase (speed up) or decrease
(slow down) the energy content of the platform. The speed of response is a function of
how fast the actuators can transfer energy, stored in the form of kinetic energy, to or from
the moving platform as shown in Figure 2.3. The block diagram on the left illustrates the
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Energy Input Energy Output

A I

cluators

Platform Actuaiors

connectors

connectors

Figure 2.3 - Energy Flow in Parallel Manipulators

energy flow when the manipulator is sped up; the right block diagram illustrates the energy
flow when the energy level of the manipulator is decreased (slowed down).

When the connectors are assumed to be rigid and massless, the actuators only have to
transfer energy to or from the platform. When a more realistic connector model is used, the
actuators have to transfer energy to or from the platform and the connector masses. For the
same desired platform velocity, the energy level required is higher when the realistic
connector model is used and the system’s speed of response or reaction time is slower. In
order to increase the velocity, the actuators have to add energy to the platform and the
connectors . When the system has to be slowed down, the actuators have to remove
energy from the platform and the connectors. The decrease of the speed of response can be
detrimental to the performance of the platform if the connector masses was not taken into
account whén designing the system. The actuators have to more powerful if the original
speed of response is desired. The use of more realistic connector models will help to
quantify the decrease of the speed of response which will provide the designer with more

accurate information when selecting the actuators.

2.2 Basic Connector Model

The simplest model for the connector of a spatial parallel manipulator is a rigid massless

body. A more realistic but simple model for the connector is shown in Figure 2.4. The
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mass M . is the lumped mass of the connector and the moving part of the actuator; this

includes the inertia of the actuator and the transmission used to convert rotational motion to
linear motion when a rotational actuator is used. A transmission is not required if a linear
actuator such as a hydraulic piston is used. The base mass of the actuator, M , , is the fixed
part of the actuator (this is in the direction of translational motion, the complete connector
will rotate when the system is moving). In this model, the deformation of the connector
and the friction of the actuator are also considered and are described by the lumped
parameter elements K [ and C, respectively. The parameters and variables used in this
basic connector model are ( see Figure 2.4 )

E. the displacement of the connector along the s direction;

K L, the equivalent stiffness of the connector;

Ct, the actuator and transmission friction, modeled as a viscous damper; and

F ., the force produced by the actuator.
The equivalent force of the actuator is determined by using the torque and the transmission
ratio of the actuator. This force (or torque) can be further related to the commands that the

controller sends to the actuators. The force that the connector applies to the platform is a

function of its displacement €, and the connector stiffness K |
F=KLE (1)

If the connector is very stiff (K| = ©9), the actuator becomes rigidly coupled to the

platform.

When the actuator is rigidly coupled to the platform, any damping or compliance
required by the platform for vibration or force control must be provided by the active
control of the actuator. In this case the dynamic behavior is mostly determined by the
dynamic response of actuator and controller. The dynamic response can be tailored
according to the desired performance criteria (within the dynamic response capabilities of
the actuator ). The main disadvantage is that the power efficiency of the system is reduced
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base
coordinate
frame

Figure 2.4 - Basic Connector Model

when the actuators (active devices) are used to simulate springs and dampers (passive
devices). An actuator can be made to behave as a damper and all the energy will be
dissipated by the actuator. This can overheat the actuator, causing a degradation in
performance and in the worse case lead to an actuator burnout. Furthermore, employing
actuators as energy dissipators is costly. Better energy disspation can be achieved by
incorporating a passive frictional element such as a viscous damper. Similar disadvantages
will be encountered when the actuator is used as a spring. Another main disadvantage is
that the dynamic response of the controller / actuator combination might not satisfy the

desired system dynamic performance.
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2.3 Implicit Force Control

One way to reduce or eliminate the complications associated with employing the
actuator as a passive device is to include an actual spring/damper pair between the
connector and the platform as shown in Figure 2.5. This is a model suitable for describe
the behavior of the system when the implicit force control scheme is employed [16]. The
additional components are as follows

K. is the stiffness element between the connector and the platform.
C.. is the viscous damping element between the connector and the platform.

The Implicit Force Control scheme generates a force by controlling the displacement of an
stiffness element [16]. The spring in the coupling stage between the connector and the
platform can be used for such a control scheme, the damper can be used to limit the

system’s vibrations in the connector. The force F that the connector applies to the platform

is a function of the displacement of the coupling stage A, and its first time derivative, the

stiffness K ¢ and the damping coefficient C.. It can be determined by using the following

equation
£=(KcA+Cc%$~)§ 2)

where s is a unit vector parallel to the connector. It can now control a force by simply

controlling a displacement variable A and its first time derivative and this process is called

Implicit Force Control. The actuator of the connector still has to generate a force in order to
balance the force developed in the coupling spring and damper. The coupling spring is

selected to be much more compliant than the connector, hence most of the deflection occurs
in the coupling spring. This type of connector is well-suited for controlling the contact

force between the platform and a rigid surface. Upon contact, the platform will yield to the
shape of the rigid surface. An example would be the polishing of a mirror or glass with the
platform. The contact force must be kept below some value to avoid damaging the surface.
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Figure 2.5 - Connector Model for the Implicit Force Control

One of the major disadvantages of employing this model is the relatively long time delay
that the coupling stage introduces. When the actuator applies a force, the coupling stage
has to deform before the force is transmitted to the platform. This reduces the speed at
which the actuator force can be applied to the platform, and therefore the reaction time of
the complete system is increased. This constitutes a major problem when high frequency
disturbance forces are applied to the platform such as those generated when using the
manipulator to support a workpiece that is being machined. The reaction time could be too

slow in order to apply the required equilibrant forces to counteract these disturbances.
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The damping element helps dissipate some of the energy the high frequency
disturbances apply to the platform. The disadvantages of using the damping element in the
model are that it also increases the reaction time of the sysiem. Furthermore, some of the
energy of the actuator is dissipated in this element instead of being transmitted to the

platform.

2.4 Modified Implicit Force Control Mode

The use of a coupling damping element is not so effective in eliminating high frequency
disturbances, since the vibrations will be transmitted to the actuator through the connector
stiffness element. A possible solution to this problem is the use of a decoupling stage in
parallel with the connector [17]. The model used for the implicit force control scheme can
be modified as shown in Figure 2.6, the additional components are

K4. is the decoupling stiffness element.

Cd, is the decoupling viscous damping element.

My . is the decoupling stage mass.
The decoupling stage damper Cq is used to reduce or eliminate the high frequency
disturbances. This damper, unlike the coupling damping element C, will not transmit the

vibrations to the actuator. Further more, it reduces the need to use the actuator as a passive
energy dissipating element when high frequency disturbances are applied to the platform.
The decoupling stage spring must be a very stiff component, as it models the support of the
decoupling damper. If this spring is too compliant, the energy applied to the decoupling
stage will deform the spring instead of being dissipated in the decoupling damping element.
This energy will be returned to the platform increasing the vibrations instead of reducing
them. At high frequencies, the decoupling damper generates a high reactive force that can
be used to counteract the high frequency disturbances. The force F applied by the
connector to the platform is a combination of the forces generated in the coupling and
decoupling stages. The force generated in the coupling stage can be calculated by using
equation (2). The force generated in the decoupling stage is a function of the first time
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derivative of the its displacement A, and the damping coefficient C 4. The force applied to

the platform can be calculated by using the following equation

E=(KcB+Co + cedhys ©)

The connector can now partially control a force by just controlling a displacement variable

Platf
®

17,

;/\
Cq P
\ 5
Q K.
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N %\ Fa 4) Ye

=7
I

Figure 2.6 - Connector model for the Modified Implicit Force Control
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A; and its first time derivative. This component of the force F is determined by the first

two terms of equation (3). The main drawback of using the decoupling stage is that it will
always be dissipating energy. The decoupling stage can dissipate energy from either the
disturbance force (which is the intended purpose) or from the actuator. In this latter case,
part of the energy input from the connector actuator is being dissipated in the connector
instead of being used to move the platform. Another disadvantage in using the decoupling

stage is the increase of mass and moment of inertia caused by the element M 4. Some of the

energy of the system will be used to move this additional inertia.

2.5 Combined High Frequency / Low Frequency Connector Model

It would be most desirable to have a connector capable of implementing the implicit
force control scheme with minimum energy loss at low frequencies (such as the one shown
in Figure 2.3, which has no decoupling stage), and a connector capable of effective
disturbance rejection for high frequency applications. The coupling stage is undesirable for
high frequency applications; the decoupling stage is not very useful for low frequency
applications and reduces the power efficiency of the actuators.

A solution is to have a single connector with the capability of optimal performance at
either low frequencies or high frequencies. This can be achieved provided that the
decoupling and coupling stages employ viscous dampers with proportional control valves.
The damping coefficient of a viscous damper can be regulated by opening or closing the
valve. When the valve is fully closed, the viscous damper is locked (the viscous damping
coefficient is extremely high, C = ©°) and will behave as an very rigid component with
no damping. When the valve is completely open, the damper will act as a very low energy
dissipating element (the damping coefficient C = Q). For the low frequency mode, the

decoupling stage must be inactive (no energy will be dissipated in this stage). This can be
achieved by completely opening the control valve of the decoupling damper. The
decoupling stage would only dissipate a small amount of energy. In this case, the only
noticeable effect of the decoupling stage would be its mass. This mass can be grouped
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Figure 2.7 - Connector model for the High Frequency Mode

with the actuator base mass. The control valve of the coupling damper would be set to an
opening that would provide the desired viscous damping for the coupling stage. The
connector model would similar to the one shown in Figure 2.5, the difference being the
higher base inertia M’ =M p +M 4.

For the high frequency mode, the coupling stage must be inactivated. This can be done
by completely closing the control valve of the coupling damper. When the valve of the
coupling damper is completely closed, it acts as an extremely rigid element. This means
that there are no deflections in the coupling stage. The control valve of the decoupling
damper would be set according to the desired damping coefficient for the decoupling stage.



The connector model for this case is the one shown in Figure 2.7.

Another possible mode of operation of this multi-purpose connector would be to
inactivate the decoupling and coupling stages by completely opening the control valve of
the decoupling damper and completely closing the control valve of the coupling damper.
The connector model to be used in this case is the one shown in Figure 2.4. This allows
the designer to tailor the dynamic response of the system by designing an appropriate

controller.

2.6 Connector Model for Dynamic Modeling

The final connector model that will used for developing the system’s complete dynamic
model is shown in Figure 2.8. This has all the components described in the previous
sections. The objective is to develop a model that can exhibit the system behavior in
different operating modes. Each connector requires the following coordinates or variables
to describe its complete configuration

S ., is a unit vector parallel to the connector.
E , is the location of M ; along the connector’s direction.

H , is the actual length of the connector (the coupling stage is not included).
L , is the total length of the connector
D . is the location of the connection between the decoupling spring and damper.
bl , is the distance of the base mass, M p,, from the connector’s base joint ( this a fixed
distance).
s and L are dependent variables which can be described in terms of the platform’s location

and orientation. Each of the connectors has 3 degrees of freedom since the coordinates E,

H, D are independent variables.



Figure 2.8 - Complete Connector Lumped Parameter Model
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CHAPTER 3
PARALLEL MANIPULATOR KINEMATICS

The dynamic state of a multi-body system is a function of the position, velocity and
acceleration of the multi-connected bodies. It is therefore neccessary to perform a complete
kinematic analysis of the system.

The required input forces and torques can be determined for a specified kinematic state
of a system (position, velocity and acceleration). This is known as the inverse dynamic
formulation. It is also possible to compute the kinematic state of the system for a specified
set of values of input forces and torques. This is known as the foward dynamic
formulation. In the case of a spatial parallel manipulator, the kinematic state of the system
(position, velocity and acceleration) will be specified according to a desired task; and then
the forces and torques required to produce such kinematic state will be calculated.

3.1 Forward and Inverse Kinematics

The spatial parallel manipulator or platform is a 6-degree-of-freedom system. The
location (position and orientation) of the platform is determined by the length of each of the
six connectors. When the six connector lengths are specified, the location and orientation
of the platform can be determined. This is known as the forward displacement analysis and
it is extremely difficult because there are multiple solutions {2]. Fortunately, the foward
displacement analysis of parallel manipulators is not required for the dynamic analysis of
the system.

On the other hand, it is relatively simple to compute a unique set of connector lengths
when the location of the platform is specified. This is known as the inverse displacement
analysis and is useful in developing the dynamic model of the system. The location of the
platform must be specified when it is used for example to present a workpiece to a machine

tool or it is used as a flight simulator. The displacement and orientation of each of the
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connectors that actuate the platform can be determined, once its motion time history has
been specified. The inverse kinematics formulation will be used in describing the motion

of the system because it is more application-oriented.

3.2 Kinematic Relationships
Prior to the kinematic analysis of the platform, some basic kinematic relationships
required for such analysis will be derived.

3.2.1 Location Analysis of the Platform

The location of the platform will be specified firstly by defining a position vector C that
locates the center point ¢ of the platform (which is also its center of mass) together with its

orientation as shown in Figure 3.1. This location is used to determine the length and

platform
coordinate Zy

system
N

base
coordinate

system ~~Zg
0

«4- connector

<
]

Figure 3.1 - Base, Platform and position vectors
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orientation of each of the connectors. In Figure 3.1 a point O is chosen which is the origin
of a set of fixed axes which is called the base frame. The ends of any connector are labeled
p and b (see Figure 3.1) and the corresponding position vectors drawn from O are Pand B
respectively.

3.2.2 Description of the Orientation of the Platform

The orientation of the platform can be described by a set of three mutually
perpendicular unit vectors attached to the platform : X , Y 1 & Z . These vectors form a

right handed set with an origin at point ¢ and define the moving frame of the platform.
Each of these vectors is described by three parameters (the directional cosines for each
vector). Although nine parameters are required to define these three vectors, there really
are only three independent parameters since the following six constraints that have to be
satisfied

- For example, choosing unit vectors yields three constraints

- For mutually perpendicular vectors, their scalar products must be zero, which yields a
further three constraints

XnYn=0;, Xn'Zn=0 & Zn*Yn=0

Therefore only three parameters have to be specified to completely describe the orientation
of the platform with respect to the base (three degrees of freedom).

The specification of the frame of reference for the platform depends upon the desired
system motion which is based on the motion and task planning. This will be discussed

later in the Section 3.6.
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3.3 Position Analysis
The location of the platform can be specified by the position of the center point ¢ and
the orientation of the platform itself. The position of any point on the platform can be

determined by using the following equation

P=C - Ry (1)

where P is the position of point p on the platform, defined in the base frame coordinate
system; C is the position of the center point ¢ ; R pc is the relative position vector of point
p with respect to the center point ¢ as shown in Figure 3.2. These position vectors are
defined with respect to the fixed or the base coordinate system.

The relative position vector R p is defined with respect to a coodinate system that is

parallel to the base coordinate system, has its origin at ¢ and is defined by the unit vectors

L Zn platform

coordinate
system

base
coordinate
system ~—Zg

0

e

X
Figure 3.2 - Location Analysis
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X ,Y¢,and Z ¢ as shown in Figure 3.2. The vector R ¢ can also be defined with respect

to the moving coordinate system or the platform's coordinate system as

R pe/m = [ X pe/ms ¥ pe/ms ch/m]T-

This vector is a constant when defined in the moving coordinate frame regardless of the

orientation of the platform.
The unit vector X 1, can be described in the fixed coordinate frame as ( see Figure 3.3 )

Xm=apXr+tapYr+apLs (2.3)

wherea |1, a2 & a3 are the direction cosines of the unit vector X , with respect to the
fixed coordinate frame. In a similar fashion, the unit vectors Y p, and Z , can also be

defined in the fixed coordinate frame using their respective directional cosines

Yun=2ayXr+apYf+tans (2.b)
Zyn=2a3Xrf+apYrtaszle (2.c)
L
A
a
13 X,
alﬁ

Figure 3.3 - Vector X  described in the fixed coordinate frame



29

The relative position vector can be written as
Rpvm=Xp/m Xm*Ypom Xm*Zpgm Zm

The relative position vector can be written with respect to the fixed coordinate frame by
combing the above equation and equations (2.a), (2.b) and (2.c)

irall-x-f} fayn X fa3 Xr!
Rpc=xpom! 212X ¢ |+ Yporm| 222X |+ Zpom | 232X f !
RESEVAS L ax3Zs EEYAS
The vector R ¢ can be also be written as
Ryput=Xpyt X £+ Yporf X £+ Zpom Lt
where the components are given by
Xpc/f = Xpe/m@11 * Ypm @12 * Zp/m 213 (3.a)
Yp/f = Xpe/m @21+ Ype/m 322 * Zpe/m 223 (3.b)
Zpdf = Xpe/m 331+ Ypo/m 232 * Zpym 233 (3.c)

By using equations (3.a), (3.b) and (3.c) the relative position vector is transformed from
the moving coordinate frame to the fixed coordinate frame. This relationship can be written

in matrix form as

P a1 312 aL131
Rpe=i 231 a3 223 |Rpum 4)
L a3; azp azz |

The 3 x 3 matrix is generally known as the rotation matrix or the transformation matrix

since it transforms a vector from one coordinate system to a second coordinate system [18].
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The matrix elements are the directional cosines of the unit vectors of the first coordinate
system with respect to the second coordinate system and are a function of the orientation of
the platform with respect to the fixed coordinate frame. The specification of these
directional cosines as a function of the desired motion of the platform will be discussed in
detail in Section 3.6.
The center point position, given by the vector C , is a user defined vector characterized

by three variables: C=[ Xc, Y¢.Z:1T. Each of these variables is a function of time.

The position of the platform can be varied by changing the location of the center point
and/or the orientation matrix of the platform. In order to completely locate the platform,
three variables must be specified for the centerpoint’s location and three variables for the
platform's orientation. Therefore the platform has 6 degrees-of-freedom.

3.3.1 Connector Length and Orientation

The length and the orientation of each connector can be calculated once the position of
the points b and p on each connector is known ( see Figure 3.4 ). The position of point p
can be calculated using equation (1). The location of point b is specified when defining the

geometry of the manipulator. The Pliicker line coordinates for each connector, [§,50]7,

are calculated using

~

S = [s ; so] ; s = Direction of the Line ; § , = Moment of the Line

[
l

-]
=

I _Bx[E-B]|

[} ST RCE ©)

§=

-]
-]

The direction and the moment of the line are defined with respect to the base frame
coordinate system as shown in Figure 3.4. A vector L along the connector can be defined

as

L=P-B=[L]s = vectoralong the connector

"

E gl = unit vector along the connector

L=|P-B]| = length of the connector ; § =|

=
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Figure 3.4 - Connector Location Analysis

3.4 Velocity Analysis

The velocity and angular velocity (also known as the velocity state) of a point on a rigid

body such as the platform can be described by a twist, T

1
1

|

(o]

T
-

IS

where w is the angular velocity vector and V ,, is the velocity of the point O on the rigid

body coincident with the point of reference [19, 20, 21, 22]. This twist or rotor can be

modeled as the resultant instantaneous motion generated by the rotation about a screw with

axis s and a pitch h

| (6)
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where r , is vector from the point O to the axis of the screw as shown in Figure 3.5. The

velocity of point O is given by

Vo=wl(ro.xs)+hs] (N

The instantaneous motion or velocity of the centerpoint ¢ can be described using the same

notation by relocating the origin at point c. This can be done by substituting . , for

Fc=Fo-C

Ve=wi(rcxs )+hs] (8)

Using equation (7), the velocity of point ¢ can also be written as

Ve=V¥,-w(Cxs) ©)
platform A
coordinate L

system
N

Instantaneous
Screw
Axis (ISA)

base
coordinate

system —zg,

«¢- connector

A .%éase

Figure 3.5 - Instantaneous Motion Analysis
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The instantaneous motion or velocity of any point p on the platform can be described using
the same notation by relocating the origin to that given point. The velocity of point p can
be determined by relocating the origin at poini p. This can be done by substituling ¢ ,, for

L£p=r,-C -Rp
Y.p=w[((Eo'.C_ 'B_pc)xﬁ)*hSJ (10)

By combining equations (8) and (10), the velocity V p can be also be written as a function

of the angular velocity vector @ and the velocity of the centerpoint of the platform

Vp=Vc+(wxRp) (11

where V , is the velocity of point p, V ¢ is the velocity of the centerpoint, w is the angular

velocity vector of the platform (w = wxi + wy ] + wzK )and R is the relative

position vector of point p with respect to the centerpoint. The velocity vector V p can then

be written as in its expanded form as

+w-'R_—w-R
cx “x Rpcx Vex wy pez ~ ¥z Vpey
= V R = . — .
y_p oy | + coy x | Rocy ch +w Rpcx W RpcZ
\Y R
cz R. —( -
W, pez v, + W, Rlcy wy Rpcx

3.4.1 Connector Velocity Analysis

The parallel manipulator is made up of a platform joined to a fixed body or base
through six connectors acting in parallel. Each connector consists of a serial HPS
kinematic chain. The letters H, Pand S denote respectively the Hooke joint and prismatic
and spherical pairs and the order in which these pairs are connected. The Hooke joint is
connected to ground, the prismatic joint which is the only actuated joint is the intermediate

pair and the spherical joint connects to the platform as shown in Figure 3.6.



The coordinates for the twist or velocity state of the end effector or platform can be
written as (see Figure 3.7)

where S 1 and S 2 are the line coordinates of the pair of intersecting rotors modelling the
Hooke joint of the HPS manipulator; S 4, S 5 ands ¢ are the line coordinates of the three

rotors modelling the spherical pair; and S 3 are the line coordinates of the prismatic pair

~ s
§3={‘3].

(13)

prismatic
joint Hooke

Figure 3.6 - The HPS serial manipulator
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where § 3 is a unit vector parallel to the connector. By selecting point p, the center of the

spherical pair, as the origin of the coordinate system equation (12) can be written in the

form

![ Y, ]=w1[§°l ’!+(,02[§°21+V3{§3}+w4[0J+w5{0}+w6 (14)
L = - ' t )

(0]

4

It can be seen that the velocity vector V p is only a function of the first three rotors of the

HPS chain
Vo=w(S, *w2ss2+V3s3 (15)

The direction vector of the angular velocity @ 1, 8 1, is a stationary or fixed vector that will
be selected to be parallel to the fixed X faxis. The direction vector of the angular velocity

02,82, is perpendicular to the direction vectors s | and s 3 , as shown in Figure 3.8,

prismatic
joint

Figure 3.7 - Rotors of the HPS Manipulator
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Figure 3. 8 - Hooke Joint at the connector's base

and can be determined by

$2=81X83

Since the vector s | is parallel to the fixed X ¢ axis, vector § 7 is confined to the YZ plane.

The required line coordinates for evaluating equation (15) are given by

[

oit=-Ls3xs|; Sgp=-Ls3xsy; §3=|

I~
=

IJ (16)

(7]

-}
=

where P is the position vector of point p, B is the position vector of point b and L is the
vector along the connector from point b to point p. The line coordinates for rotors 1 and 2

can also be written as

So1=Ls;xs3 =Lsy; so=Lsyxsz=Lsy;

where the vector s 23 =s2 xs 3. Using the line coordinates for the three rotors and

equation (15), the velocity vector V , can be written as

Vp=Lwis,+Lw2sy3+V3s; (17)
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3.4.2 Inverse Velocity Analysis

For the dynamic analysis it is most important to determine the velocity of the prismatic
pair and the angular velocity of the Hooke joint of the HPS manipulator. A unit force
vector acting along the connector itself has the following ray coordinates

§3=%]

This force is clearly reciprocal to the rotors 1, 2, 4, 5 and 6. Forming the reciprocal
product of this unit force with equation (11) yields the following expression for the
prismatic pair velocity V 3

Vi=V;,°s3 (18)

A unit force vector acting along unit vector s 2 and going through point p has the following

ray coordinates

W)
[ LS B
[}
[[72]
[\*]

This force is clearly reciprocal to the rotors 2, 3,4, 5 and 6. Forming the reciprocal
product of this unit force with equation (11) and using the line coordinates derived

previously yields the following expression for the angular velocity w

wy==P 22 (19)

A unit force vector acting along unit vector s 23 and going through point p has the

following ray coordinates

172}
N *
i

]
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This force is clearly reciprocal to the rotors 1, 3, 4, 5 and 6. Forming the reciprocal

product of this unit force with equation (11) and using the line coordinates derived

previously yields the following expression for the angular velocity w2

wz:—LL%_?é. (20)

The connector angular velocity vector w 7 is defined as the sum of the angular velocity

vectors w {and w7

-89 (21)

This vector and can be written as a function of the platform's centerpoint velocity vector

V ¢ and the platform's angular velocity vector @

wi2=

(Ve s2)*w (Rpcxsy)] s+
3 ]

[Vc._ + e B_ S

3.4.3 Rigid Body Velocity Analysis

The velocity of point p, V p,, can be determined by using equation (11) or (17).

Expressions for the velocities and angular velocities of the rigid bodies in the connector
model must also be found. As explained in Section 2.5, the connector can be modeled as

the system shown in Figure 3.9. All the rigid bodies in the connector will have the same

orientation and therefore the same angular velocity vector w 12 .
The velocity of mass M, is only a function of the angular velocity of the Hooke joint
w 12 since its distance from the base, bl , is constant. The velocity of this rigid body can be

written as
Vo =bl{wizxss! (23)
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Using the expression for the angular velocity vector w 12 given in equation (22) and the

definitions for the unit vector s2 and s 23 , the velocity of the base mass can be written as
¥b=% [(Vcesp)*w (Rpexsy)]sa+

%[(Xc'§23)+.@‘(.llpcx§23)]§z3 (24)

The velocity of mass M 4 is function of the connector’s rotation and the rate of change of

the distance D

Vi= Ds3+D(wi2xs3) 25)

Using the expression for the angular velocity vector w 12 given in equation (22) and the

definitions for the unit vector s and s 23 , the velocity of the decoupling stage mass can be

written as

%[(zc-szg)m-(_lspcxszs)}m (26)

The velocity of the mass M . is also a function of the connector's rotation and the rate of

change of the distance E
Ve= Es3+E(wi2 xs3) (27)

Using the expression for the angular velocity vector w 12 given in equation (22) and the

definitions for the unit vector § 2 and s 23 , the velocity of the connector equivalent mass

can be written as
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decoupling

«¢——— Connector

Figure 3.9 - Complete Connector Model
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3.5 Acceleration Analysis

The acceleration and angular acceleration (also known as the acceleration state) of a

rigid body such as the platform can be described by an accelerator A:

where w , a are the angular velocity and acceleration vectors of the rigid body. The
vectors V , and A , are the velocity and acceleration of the point O on the rigid body
coincident with the point of reference. The accelerator is a motor [22] where the directional
part m, the angular acceleration vector « in this case, is independent of the origin. The
moment part of the motor m ,, the acceleration vector term in this case

platform
coordinate

system \

Z,

Instantaneous
Acceleration

system —zg,

o <& connector

b

: base

Figure 3.10 - Second Order Instantaneous Kinematics
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Ao-w x¥,, changesto mp=m,+ PO x m when the origin is moved from point O

to point p. The acceleration of the centerpoint of the platform c can be determined by
changing the origin from point O to point ¢ as as shown in Figure 3.10. The velocity
vector V , used in the accelerator’s definition will also change with the relocation of origin

to point ¢

<

c=Vo-Cxw

The acceleration of the centerpoint can be determined by

>
|<
>

c-0xVe=Ao-wxVe-Cxa

Using the above equation for the velocity V ¢ , the acceleration of point ¢ can be written as

Cxwl-Cxa (29)

~—

Ac=Aoc-wx

The acceleration of the point where the connector and the platform are joined together, point

P, can be determined by relocating the origin from point ¢ to point p

Ap=Ac+wx[w xRpcj+axRpe (30)

3.5.1 Connector Acceleration Analysis
The acceleration of point p can be written as as a function of the velocities and

accelerations of the individual joints that make up the HPS manipulator (see Figure 3.7)

6

6 6
Ap= Z 05j§oj + Z wjz(§jx Soj) + 20018 x Z WjSof +
i=t j=t j=2

2w2§2x2 wj_s_oj+2w3§3xz wj§0j+2w4§4xz WjS o * 2W5S 5X WES o6

6 6 6
J=3 J=4 _]=5

Using the line coordinates defined in section 3.4.1, the above equation can be simplified
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considerably

- . - 2 2
Ap=01S5 + W28 2+ V3S3+0T(S1XSo1)*w3(83x842)+

2wis  x(wW2sopt V3ss) + 2w289xV3s, (31)

3.5.2 Inverse Acceleration Analysis

The acceleration vector A p can be calculated given the acceleration of the platform
center point ¢, A ., and the angular acceleration vector of the platform, a , as outlined in

equation (30). The joint velocities required in equation (31) were determined in section
3.4. Therefore, the only unknowns in equation (31) are the joint accelerations. All the

known terms in equation (31) will be grouped into

” 2
Ap=Ap-07($1xS,1)-w3(82X84) -

2018 1x(wW2sg2+ V383) - 2w2s92x Vi3s3 (32)

As in section 3.4.1, the line coordinates for rotors 1 and 2 can also be written as

$02= Lsyxs3=Lsy

7]
[=]
=

i
C
m

—_

»
/2]

w

i
-
v

ISy

Using these equations for the line coordinates, equations (31) and (32) can be combined to

obtain an expression for the unknown joint accelerations
Ap=wiLsy+waLsy3+Viss (33)

A unit force vector acting along the connector itself has the following ray coordinates

This force is clearly reciprocal to the rotors 1, 2, 4, 5 and 6. Forming the reciprocal



product of this unit force with equation (33) yields the following expression for the
acceleration of the prismatic pair A 3

A3=V3=Ap°s; (34)

A unit force vector acting along unit vector s 2 and going through point p has the following

ray coordinates

This force is clearly reciprocal to the rotors 2, 3, 4, 5 and 6. Forming the reciprocal
product of this unit force with equation (33) and using the line coordinates derived

previously yields the following expression for the angular acceleration « |

a1=<i>1="p.§2 (35)

A unit force vector acting along unit vector s 23 and going through point "p" has the

following ray coordinates

i

17 ]

This force is clearly reciprocal to the rotors 1, 3, 4, § and 6. Forming the reciprocal
product of this unit force with equation (33) and using the line coordinates derived

previously yields the following expression for the angular acceleration o o

*

. Ay°*s
0t2=c02=ﬂL;[1 (36)
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The connector angular acceleration vector a |2 is defined as [19]

>

X2=A[S1+A2S2+WIW2(S X S2) 3

3.5.3_Rigid Body Acceleration Analysis

As explained in Section 2.6, the connector can be modeled as the system shown in

Figure 3.7. All the rigid bodies in the connector will have the same orientation and

therefore the same angular velocity vector w 12 and angular acceleration vector  12.
The acceleration of mass M y, is only a function of the angular velocity and acceleration
of the Hooke joint, w 12 and a 12, since its distance from the base, bl, is constant. The

acceleration of this rigid body can be written as

Ap=bl{ap2xs3]+bliwpx (w2x s3)! (38)

Using the expressions for the angular velocity w 12 , angular acceleration a 2 and the

definitions for s 2 and s 23, the acceleration A p can also be written as

Ap=bl(a sy +aas8qy3)+

ot
—~—
n
w
—
(8]
\O
~—

bl 2wy wa(s| "s3)s+wilsy s3)s;-(w}+w})s
The acceleration of mass M 4 can be written as

Ag=Ds3+2D(wi2xs3)+D[apxs3|+D{wpx(wizxss)! (40

Using the expressions for the angular velocity w 12 , angular acceleration & {2 and the

definitions for s 2 and s 23, the acceleration A g can also be written as
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Ag=Ds3+2D(wsy+w2s)+D(a1sy+a2823)+
D{ 2w wals ~s3lsa+wils ss3)s (W] +w3)ss) 41)
The acceleration of mass M ¢ can be written as

Ae=Es3;+2E(wi2xs3)*Elanpxssi+Elonpx(wizxs;)] 42

Using the expressions for the angular velocity w 12 , angular acceleration « 12 and the

definitions for s 2 and s 23, the acceleration A  can also be written as
Ae=Es3+ 2E(wisa+wasy)+E(aisy+tazsyg)+

El 2wiwa(s  s3ls+wils; 'ss)sl-(w"ﬁw%)ssf (43)

3.6 Motion Planning
Path planning consists of describing the motion of a given point of a manipulator.
Motion planning describes the motion of a given point and the orientation of the end
effector. Enough infomation should be provided in order to describe the desired motion for
the system. Once this motion is determined, the position, velocity and acceleration of the

connectors can be determined by an inverse kinematic analysis.

3.6.1 Motion Planning using Screw Theory
As outlined in Screw theory [20, 21, 22, 23] the instantaneous motion of a body can be

described by the rotation about a screw as shown in Figure 3.11. The parameters required
to describe this screw are the axis of rotation g, the pitch h, and the location of the screw

axis with respect to the base coordinate frame origin, r ,. The displacement of a point p on

the platform coincident with the point of reference can be determined using the screw



parameters and an angular displacement 6 about the axis of rotation of the screw

AP,=08{(roxs)+hs|
The displacement of the centerpoint ¢ can be written as

AC=8{(ccxs)+hs]

The new location of the centerpoint ¢ after the rotation 0 is given by

platform 7
coordinate =m

system \‘

Instantaneous
Screw
Axis (ISA)

base
coordinate
£ system

>4

Figure 3.11 - Instantaneous Motion of the Platform

(44)

(45)

(46)
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The displacement of any point on the platform can be determined by

AP=8{((rc-Rpc)xs)+hs] (47)
The new location of a point p after the rotation 0 is given by

Prew=P oid+0{((Ec-Rpc)xs)+hs] (48)

j

The location of any point on the platform can be also written in terms of the centerpoint

position
Bnew=_(;neW'e(B.pcx§) (49)

The vector R pc is the relative position vector of any point p with respect to the
centerpoint prior to the rotation 0 and it is a function of the dimensions and orientation of

the platform.

3.6.2. Describing the Orientation of the Platform
The relative position vector R pc can be defined in terms of the vector R pe/m which is

the relative position vector described with respect to the moving coordinate frame attached

to the platform as explained in section 3.3. As given by equation (4), R pc can be written

as

fan ap 313]
Rpc=| 221 32 2323 !Rpom
L az; asz ass

The columns of the 3 x 3 matrix in the above equation are the unit vectors that describe the
orientation of the platform with respect to the a fixed coordinate frame. This matrix is
known as the transformation or rotation matrix [R]. The elements of this matrix change as

the platform moves. The change of the orientation caused by a rotation 6 about the screw
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axiss (s =6x i+sy j+sx k) canbe determined by

[xm, Yo LmJnew =[_x_m,_Y_ma Zm]old[R] (50)

Where [ X m, Y m, Z mloid is the orientation of the platform with respect to the fixed
coordinate frame prior to the rotation, [ X m, Y m, Z m] new is the orientation of the

platform with respect to the fixed coordinate frame after the rotation, and [R]isa3x 3

rotation matrix given by
[ x2vsnO +cos@ SxSyvsnB -s;sin@ sxs,vsnf +sysin8 :
i
R}=; SxSyvsn® +s;sin@ syZvsn® +cos®  sysvsnb -sxsme - (51)
|

| SxSzvsnB -sysin® sys,vsnO+sysin@ s,2vsnO +cosH

where the versine function is vsn 0 = 1 - cos 6. This rotation matrix [R] describes the

change of orientation of a rigid body caused by a rotation 6 about a unit vector s [18].

In the case of motion planning the initial orientation of the platform will be specified by
the unit vectors X m, Y mand Z ,. These vectors must be specified according to the
desired initial orientation of the platform. If the platform is being used in a machining
operation, the initial orientation of the workpiece with respect to the machine tool will be
the initial orientation of the platform. The orientation of the platform is subsequent
locations will determined using equations (50) and (51).

The premultiplication of the relative position vector by the rotation matrix is equivalent
to the second term of equation (49)

-6 (Rpcxs)={R|Rpum

The relative position vector R pc used in the left hand of the equation is the vector before the

rotation 6.
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3.6.3 Motion Generation
The position of any point on the platform can be determined by using equation (48)

pew =P old+e[((£c'.&pc)x§)+h§] (48)

I~

The velocity of any point can be determined using equations (8) and (11)

_Yp=w«[((2c‘l_{pc)x§)+h§} (52)

The acceleration of any point on the platform can be determined by using equations (29)

and (30)

rc-Rpc)xa (53)

Ap":A_o*'Qxi(Ec‘g.pc)xQ}*'(— n

where 6, w and a are the angular displacement, velocity and acceleration vectors of the

platform and are related by

=dg’a=d(—'o-=

3}
« d ¢ t 9

l\)l (38

=

If the screw axis s remains fixed during the motion, which is the case in simple motions

such as translation and rotation, the angular velocity and acceleration can be written as

- d26_5_

7]

. oo do
- t dt?

W= *>=8
«w dt...a

A simple way to describe the motion of the platform is by using a continuous time
function for the angular displacement such as a cycloidal motion curve used for designing
cam displacement profiles [24]. This will assure that the angular velocity and acceleration

vectors will also be continuous functions. The angular displacement function to be used is
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= 8811 _cos(mt)]
8) = 43| 1-cos(T)!s (54)
where A6 is the total angular displacement (in radians) and T is the total period or the time

required to complete the desired motion. The angular velocity and acceleration vectors,

w (t) and a (t), are determined by the time derivatives of the angular displacement function

w(® =882 [sin( ) |5 (55)
at)= Agejrnzi fLCOS(’%)i s (56)

3.6.4 Rectilinear Motion

Rectilinear motions of the platform can also be described using screw theory. The
orientation of the platform is fixed which make the angular velocity and angular

accelerations zero. For this type of motion it is said that the axis of rotation is located at

infinity, which is specified by setting the angular rotation 8 to 0, the radius of rotation

o = , and the pitch h = °0, The product of the angular rotation and the pitch can be
written as ?
h6=S§

where S is the translational displacement of the platform. The axis of translation w , which
is parallel to the axis or rotation s, is now used to describe the direction of translation of the

platform. The displacement of any point on the platform can now be written as
AP= hOw =Sw (57)

The product of the rotational velocity and the pitch can be written as
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hw =Vt

where V ; is the translational velocity along the vector w. Using the above equation and

equation (52), the velocity of any point on the platform can now be written as

Vp=how =Viw (38)

The acceleration of any point on the platform can now be written as

Ap=Ao= Show =Aew (59)

where A ¢ is the translational acceleration along the vector w.
The translational displacement can be described by a time function similar to the one
employed for the angular displacement

= AS{q. mt)]
SO = 45| 1-cos(T)! (60)
where AS is the total translational displacement, and T is the time period required to

complete the motion. The translational velocity and acceleration can be determined by
taking the time derivatives of the displacement function

Vet) = Azs—zlf—,sin({fr_t) (61)
Ac(t) = %S—(};—l)zcos(’;‘ri]) (62)

3.6.5 Motion Planning for Machining and Mirror Polishing
Rectilinear motion is a typical motion used when machining a workpiece. In this case

the motion can be determined by using equations (48) and (57) through (62). The
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Figure 3.12 - Platform Rotation about a given axis §

parameters that have to specified are the displacement AS, the period T and the axis of

translation w .

Another possible motion is when the platform has to follow a curve while remaining
tangent to the curve at all times. Such a motion is used to polish a mirror or machine a
cylindrical part. This type of motion can be described as a rotation of the platform about an

axis of rotation s that is at a distance r . from the platform’s center point and perpendicular
to the axis Z p, as shown in Figure 3.12. The platform's motion can be determined by
using equations (48) and (54) through (66). The parameters required for planning this
motion are the platform's initial location, the axis or rotation £, distance r from the

centerpoint, the total angular displacement A6, and the period T. For this type of motion

the position, velocity and acceleration of any point on the platform are given by

B'—'Bo"'[R}B_pc/m (63)
Vo=w[(rc-Rpc)xs] (64)
Ap= wx[(Ec-Rpc)x@j+(rc-Rpe)xa (65)



CHAPTER 4
MANIPULATOR FORCE AND TORQUE ANALYSIS

In order to derive the equations of motion of the manipulator, it is necessary to perform

a complete force and torque analysis. This analysis determines the resultant forces, F j,
and the resultant torques, T j, acting on each body of the system. In addition, the

force/torque analysis also determines the static capability. The issues of stability and
actuator requirements are also examined.
A rigid body may experience forces and torques of the following types
- External : These are caused by external sources such as actuators and disturbances.
- Contact : These are generated by the contact with other rigid bodies or passive elements
such as springs and dampers.
- Field: These are created by the action of a field such as a magnetic force or gravity.
- Inertial : These are the result of the rigid body’s angular velocity, and the linear and
angular acceleration.

The resultant force vector, F ;, and the resultant torque vector, Tj, acting on each body

in the system produce a change of the dynamic state of the system which is described by
the position, velocity and acceleration vectors. All the forces and torques acting on the
platform are shown in Figure 4.1. This model does not include the connector model
components (as outlined in Chapter 2 ) which will be considered later. The system shown
in Figure 4.1 is a complete model when the connectors are modeled as rigid, massless

bodies.

4.1 Platform External Forces and Torques

The external force, F ext, and torque, T ext, applied to the platform are determined by

the use or application of the platform. One possible application is to use the platform as the

54
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Figure 4.1 - Platform with Applied Forces and Torques

base for a work piece in a machining operation; another possibility is to use the platform to
control the contact force with a surface such as when polishing a mirror. The equivalent
force and torque generated by the external force and torque about the center point ¢, which

is assumed to be coincident with the center of gravity, are given by the following equations

Fe=Fext ; Te=Text* (_Kec X Eext) (1)

where R ¢ is the relative position vector from the centerpoint of the platform to the line of

action of force F ext, as shown in Figure 4.2. These equations can be expanded to
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cxX ext, x Tcx ext, x ecx ext, x
l:cy = 1::ext. y Tcy = Text. y + Recy x |E ext, y 2)
Fa l::ext, z/ Ta/ Text, z/ Rexz/ lqext, z

Any force / torque combination acting on a rigid body can be combined into a dual vector

quantity called a wrench, W and the external force and torque acting on the platform, with

the center point ¢ as the reference point, can be combined into an external wrench L’V’:m:

~ I— F 3
W =| L ext 3
T Text *(Rec X Fext) ©)

4.1.1 External Forces and Torques in Mirror Polishing

One possible use of the platform is to control the contact force between the end effector
and a surface. An example of such application is polishing a mirror or glass. In this case
the end effector will support some polishing material which will be moved about the
surface using the manipulator while at the same time the contact force is kept below a safe
limit to avoid any surface damages. The movable platform must be tangential to the surface

at all times while applying a normal or contact force as shown Figure 4.3

Iext Z m

Figure 4.2 - External and Gravitational Forces & Torques acting on the platform
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There are two forces applied to the platform, the first is the normal force F , caused by the

contact between the polishing material and the mirror surface. This force vector is the
perpendicular to the platform and in the opposite direction of the unit vector Z . Since the

normal force vector intersects the centerpoint it does not produce a torque. The second
force vector is a friction force F g and it is caused by the friction between the polishing
material and the mirror surface. This force is a function of the normal force F ; and the
coefficient of friction u. Clearly it is tangent to the mirror surface and it is always opposite

to the direction of travel, which is described by the vector t as shown in Figure 4.4.

polishing
material

direction of travel

Figure 4.3 - Mirror polishing task

N
B

platform

polishing
surface

Figure 4.4 - Mirror polishing forces
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When the platform is rotating about a given axis §, the direction of travel is given by ( see
section 3.6 )

t=Zmn* s

If the platform is following a pure translational motion, the direction of travel is given by
the vector w ( see Section 3.6 ). Since the line of action does not intersect the centerpoint ¢

( see Figure 4.4 ) it produces a torque which is given by

Tg=aZn* Eg
The external wrench applied to the platform during the mirror polishing task is therefore

]
_‘!ext"—';t -Fp(Zm+ut) 4)

aZm* (-Fput)

[

4.1.2 External Forces and Torques in Machining

One of the most promising applications of the platform is in machining operations,
where the workpiece is positioned and presented orientated by the moving platform to the
cutter as shown in Figure 4.5. The advantage is that the system is stiffer when using a
platform over a conventional machine tool . This offers the possibility of machining
complex geometries with higher precision and greater material removal rates than what is
possible with conventional multiaxis machine tools.

In general the forces developed in machining are somewhat complex to describe since it
depends on many diverse factors such as the velocity of cutting, the thickness of the cut,
the material being cut and the number of teeth of the cutter among other things [25]. For
simplicity a full groove cut with a four tooth cutter, as shown in Figure 4.6, will be
considered. Each tooth will be loaded with a cutting force when inside the cutting area
which the arc between points e and d of Figure 4.6. The force applied to the platform is a
combination of the individual loads on each tooth. As shown in Figure 4.7 the tooth

cutting force can be divided into a component perpendicular to the cutting surface, the
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normal force, and a component tangential to the cutting surface which is given by

F. = K bFrsind

where K ¢ is the specific stiffness, b is the depth of cut, Fr is the feed rate and ¢ is the angle

shown in Figure 4.6. The tangential forces for the four teeth shown are given by
Fi1=KsbFrsing
Fyp = K sbFr sin (& + 90°)
Fy3 =K b Frsin (¢ + 180°)

F 4 = K b Fr sin (¢ + 270°)

The cutting force of a tooth becomes zero when it is not touching the cutting surface. The
resultant force applied to platform is the sum of all the cutting forces. In a full groove cut
the force components perpendicular to the direction of travel cancel out and the resultant

direction
of travel

Figure 4.5 - Machining with a platform



direction
of travel

Figure 4.6 - Top view of a four tooth cutter in a full groove cut

Ft Fnl {: Ft
¢ F

force polygon

Figure 4.7 - Cutting forces
cutting force is a constant along the direction of travel
E cutting = KsbFrt

where the direction of travel, t, was determined in the previous section. This force acts in a
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plane parallel to the platform at a distance a from the centerpoint of the platform as shown
in Figure 4.5. The normal force shown in this figure is zero since the end mill or cutter is
machining the workpiece wilh the sides of the cutier, therefore all the cutting forces are ina
plane parallel to the platform.

The external wrench applied to the platform during the full groove cut is

v -KsbFrt
Wen = aZm* (-KsbFrt) ©)

A more complex description of the machining external wrench is required for other type of
cuts and also to include the effects of machine tool chatter [25].

4.2 Gravitational Forces and Torques
The gravitational force and torque vectors acting on the platform are given by ( see
Figure 4.2)
Fg=-Mpg & Tg=RxFEg

where R ; is the relative position vector of the platform’s center of gravity respect to the

centerpoint of the platform. This equation can be also written as

gx 0 £x Roex 0
Foy | = 1V([) Ty | = [Rygy | = L;) (6)
Fy, o 8 T, Ry p 8

where M j, is the mass of the platform. The gravitational torque acting on the platform is
zero since the reference point to be used on the platform, c, is coincident with the center of
gravity of the platform. The location of the reference point ¢ at the center of gravity makes
the position vector R ¢g =0. The gravitational effects on the platform will be described by

a gravitational force

w.-| Eg |
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4.3 Connector Forces and Torques
Each of the connectors applies an effective force F 1 to the platform at its corresponding

connection point with the platform as shown in Figure 4.8. This force is generated some
of the connector components. How the connector exactly generates this force will be
discussed later. When the connector is assumed to be a rigid massless body, the effective

force F 1 is the force generated by the linear actuator located on each connector. Each
connector force has a magnitude of F | and acts along the corresponding line s 3 which is at
a distance R pc from the platform’s center ( as an example the distance R pc for connector 2,

R 2, is shown in Figure 4.3 ). The coordinates for each applied force are given by
FrL=FLs3 & TpL=FL(Rpxsj) (8)

Which can also be combined into the dual vector form

€y, Es ED,

Figure 4.8 - Connector Forces acting on the Platform
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Wi-Ful gl | ©

These applied forces can be combined into the resultant connector wrench given by

@dﬁ(ﬁl_)l + (.@L)ﬂ (.@L)3+ (@.L!)4+ (_W.L)s" (@L)s (10)

which can also be written as

=)

d={Jm {EL} (11)

where [J ;] is Manipulator Jacobian, and {F | } is the connector force column matrix

{FL}=[(FL)1,(FL)2,(FL)3,(FL)4,(FL)s,(FL)e|T. TheJacobian [J ml

can be written as

=[(8),(8)2(8)3(8)a(8)s (8)s] (12)

(

(/2]

[J

B.

where each column of the Jacobian Matrix are the Pliicker line coordinates of a connector

( see Section 3.3.1)

(8)i = Rols, |

4.4 Platform Resultant Forces and Torques

The resultant wrench @p acting upon the platform is the sum of the resultant connector

wrench @_d, the external wrench _@ext and the gravitational force _\/i g

Wo=W,+ Wext+ Wy (13)



This resultant wrench produces the inertial force F* pand torque I*p acting upon the
platform

FY =-MpAc; Th=-[{a - )+(exp-a) 9

where M p is the mass of the platform; A . is the acceleration of the center of gravity; « is

the angular acceleration of the platform; w is the angular velocity of the platform; and Ip”

is the Inertia Dyadic of the platform about the center of gravity. The static solution for the
platform can be obtained by using equation (13) and by setting the resultant wrench to zero

_‘/irL"' @ext"' @g =0 (15)

4.5 System Singularities
The resultant wrench can be calculated given the inertial parameters of the platform M,

and Ip”, the centerpoint acceleration vector A ¢ and the angular acceleration and velocity

vectors a and @ which are determined by the motion planning process as outlined in

Section 3.6. When the external and gravitational wrenches are known, equation (13) can
be rearranged to determine the connector force matrix {F 1 } required to generate the desired

resultant platform wrench

—

1)

Uml {EL} = @p - Were - W, (16)

This is a system of 6 equations with the connector forces as the 6 unknowns: (Fr) 1,

(FL)2,(FL)3,(FL)4,(FL)s5,(FL)s. Premultiplying equation (16) by the inverse
of the Manipulator’s Jacobian , [J ] -1, yields the following expression for the connector

force matrix

{EL}=[Jm:!-l(ﬂp'_@.ext ‘ﬂg) (17)
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If the above equation cannot be solved or the required connector forces calculated by the
above equation exceed the physical limits of the system , the planned motion cannot be

generaied and the sysiem is said to be degenerate or singular.

4.5.1 Geometric Singularities
When the det [ J ] =0, it is not possible to obtain the inverse of the Jacobian matrix,

and therefore the above equation cannot be solved. The rank of [ J ] is less than six and
the system of equations formed by the product F| [J m] is not an independent set of
equations. The columns of [ J ] have become linearly dependent which implies that the

connector line coordinates have become linearly dependent. In practice the connector
forces cannot equilibrate the applied wrench. The actuator magnitudes will have to be set to
infinitely large values and the actuators will saturate in the process. When this situation
arises the platform is said to be in a degenerate or singular configuration (position and
orientation). This type of singularity will be defined here as a geometric singularity, since
it is a function of the geometry of the connector lines.

It is important at the outset to determine the location of the geometric singularities, and
to avoid them when planning a motion. It is desirable that the working volume of the
workspace used for a proposed application does not include any geometric singularities.

It is clear that as the platform approaches a singularity, the connector forces will reach
very high values (FL)1=(FL)2=(FL)3=(FL)4=(FL)s=(FL)¢= . Clearly

this is physically impossible, and the actuators which generate the connector forces will

saturate

{Ea} = {Fa max} = [ Fa 1max, Fa 2max, Fa 3max, Fa 4max. Fa smax, Fa 6max ]T

In this case, the desired resultant wrench will be different from the actual resuitant

wrench. This wrench V_/\\’_; is determined by setting F | to F pax in equations (13):

~ % . o~ o~
Wo=Un {Emax} * Wet + Wy (18)
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Since the actual resultant wrench is not equal to the desired resultant wrench , the
platform’s actual acceleration and angular acceleration vectors will be different from those
required by the pianned motion. The platform wiii not be abie io foliow the pianned motion
and the system will be out of control or uncontrollable as it approaches a singularity.

The geometric singularities depend on the geometry and location of the platform. The
geometry is determined by the dimensions and configuration of the manipulator. The
location of the platform is specified by the center’s position vector C; and the orientation
which is described by using the 3x3 rotation matrix [R] as explained in Section 3.3.
Therefore the geometric singularities can be avoided by modifying the motion planning

parameters ( see Section 3.6 ).

4.5.2 Actuator Singularities

The platform can also become uncontrollable in a nonsingular location when one or
more of the required connector forces exceed the allowed maximum connector forces, i.e.
{F1} >{ F max }. In this situation the saturating actuators will operate at their maximum
force. The actual resultant wrench will of course be different from the desired or required
wrench, and the motion of the platform will deviate from the desired motion profile.

The power required from each individual connector can be calculated by the following
scalar product (power is a scalar quantity)

Power =[Fa+-V ;] (19)

where F a is the actuator force and V  is the connector’s endpoint velocity. When the

required power from any of the actuators exceeds its maximum capacity, the desired
platform motion cannot be generated. A similar problem will arise whenever the required
actuator speed of response or bandwidth exceeds the maximum bandwidth of the actuator.
In general, whenever the required forces cannot be generated by the actuators and the

system is in a nonsingular location, the system is said to be in a actuator singularity.



67

Actuator singularities create similar problems as the geometric singularities but are caused
by the force, power and/or bandwidth limitations of the actuators.

Whenever the platform is in a singuiarity (either a geometric or an actuator singuiarity},
the desired motion cannot be generated and its said that the system is out of control or
uncontrollable. The platform’s motion is altered or degraded. A consequence ofa
singularity is that the motion generated will be different from the planned one. A serious
consequence of a singularity is that the change in motion might lead the platform to
subsequent singular locations. In this case the system does not recover from the singularity

and the platform will become unstable and totally out of control.

4.6 Connector Force Analysis

As mentioned before each connector applies a force to the platform. If the connector is
modeled as a rigid massless body, the connector force will be generated by the linear
actuator. When more complete models are considered, the connector force also depends on
the system parameters (stiffness and damping), displacement and velocity. In order to
generate the dynamic model, expressions for the connector forces, and the forces applied to
each of the rigid bodies in each connector must be obtained. The complete connector model
is discussed in Section 2.5. The first body on each connector is the equivalent mass M,

the second body on each connector is the decoupling stage mass M ¢, and the third is the

actuator base mass M p,.

4.6.1 External Forces and Torques
The only external force acting on M ¢ is the actuator force Fa, as shown in Figure 4.9.

The torque is zero since it is assumed that its line of action intersects the center of gravity .

The external force acting upon M, F (ext, ¢) , is given by

F( ext,e )= Fa (20)
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4.6.2 Contact Forces and Torques

There are two contact forces acting on M ¢, Ftand Fy as shown in Figure 4.9.
F kL is produced by the deformation of K . F is generated by the friction of the actuator
and transmission which is modeled as a viscous damper with of damping coefficient C.

The torque produced is zero since the line of action of all these forces intersects the center
of gravity of the mass. The contact force acting upon Me , F (¢, ¢), is given by

Fc,e) = -[ Fet + FiL] @1
where the forces F ¢y and F are given by
Fct=CtE; FkL= KLé[_ (22)

where 0 | is the deformation of K [ and is given by

dL=(E-H)-lo (23)

where 1|, is the free length of K .

There is are two contact forces acting on the decoupling stage mass M 4, F ¢ and
Fd as shown in Figure 4.10. Fq is produced by the deflection of K . F ¢4 is generated
by the friction of viscous damper C 4. The torque is zero since all the forces go through the

center of gravity. The contact force acting upon M 4 , F ¢, 4) , is given by

I:(c,d) = ‘[ch"’de] (24)
where the forces F x4 and F ¢4 are given by

Fea=Ca(D-L); Fra= Kadyg (25)
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S3 Free Body Diagram
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Figure 4.9 - Forces acting upon M ¢
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Figure 4.10 - Forces acting upon M ¢

where d 4 is the deformation of the decoupling stage stiffness and is given by
dd=D-1lg (26)
where 1 4, is the free length of the decoupling stage support.

There are two contact forces acting on the base inertia M, F ¢t and F  as shown in

Figure 4.10. Fis a workless constraint caused by the rigid rod connection to the base.
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F .t is generated by the friction of the actuator and transmission which is modeled as a
viscous damper with a damping coefficient C. The torque produced by these contact
forces is zero since their line of action intersects the center of gravity. The contact force

acting upon My, F (¢, b) . is given by

1:"(c.b) =[Fg-Fr] 27

4.6.3 Field Forces and Torques
The only field force acting on the rigid bodies of the connector is gravity as shown in
Figures 4.9, 4.10 and 4.11. The gravitational torques are zero since the point selected for

the sum of forces on each body is its center of gravity. The gravitational forces are

F(ge)=-[Megik (28)
F(g d) = -[M4g 'k (29)
F(gb)=-IMpg ik (30)
Free Body Diagram
Fa

',

bl F,

Figure 4.11 - Forces acting upon M



4.6.4 Resultant Forces and Torques

The resultant force and torque acting on each of the bodies of the connector is the
combination of the external forces/torques, the contact forces/torques and the field
forces/torques. The resultant torques is zero since the external, contact and field torques

are zero. The resultant force vectors for the rigid bodies on each connector are given by

Fe=[Fa-C¢E-KpdL|s;-[Mcglk (31)
Fa=|-Cg(D-L)-Kgdglss-[ Mgglk (32)
Fb=[C(E-Fels;-[ Mpglk (33)

4.6.5 _Additional Equations

In order to completely describe the behavior of the connector, some additional force
equations have to be derived. The platform is joined to the connector by the coupling
stiffness and damper, and by the decoupling damper as shown in Figure 4.12. The
connector force F 1 is produced by the damping elements C 4 , C; and by the stiffness

element K.
Fr =[Fed+ Fee* Fie Js3 (34)

where F .4 is the frictional force of the decoupling stage damper C 4 ; Fc is the frictional
force of the coupling stage damper C ; and F . is the spring force of the coupling stage
spring K. These are given by

Fe=Cc{H-L); Fre=Kcde (35)

where d . is the deflection of the coupling stage stiffness and is given by

71
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Free Body Diagram
F
D ch
Fi. Fe.

Free Body Diagram
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Fec

Figure 4.13 - Forces acting at the connection between the connector and coupling stage

dc=(H-L) -l (36)

where | o, is the free length of the coupling stage spring. The forces acting at the

connection of the coupling stage and the connector itself are shown in Figure 4.13. The



73

balance of forces is given by

Fxis3 = Fec* Fielss 37)

An expression relating the connector force F | and the force required to deform the

connector can obtained by combining equations (23), (25), (34) and (37)

KLdrLss = Fr -Cq(D-L)ss (38)

4.6.6 Force Analysis for the Simple Connector Model

As explained in Section 2.2, the connector can be modeled in different ways. For the
complete leg model, the force analysis is given by equations (31), (32), (33) and (34).

The most simple model is obtained by assuming that the connector is a rigid and
massless body. In this model the connector force is generated by the actuator. A more
complete model is obtained by including the stiffness of the connector and the actuator’s
internal friction. In this connector model the decoupling stage is deactivated by setting the
decoupling damping coefficient to a very low value (C 4 =0). The coupling stage is
deactivated by setting the coupling damping coefficient to a very high value as discussed in

Section 2.5 (Cq = ). This means that this displacement H is equal to the connector

length L minus a fixed length which is the free length of the coupling stage spring K ¢,
l¢o , and its first time derivative is zero. In this case the resultant forces acting upon
masses M ¢ and M , remain the same. The resultant force acting upon mass M ¢4 , which is

given by equation (32), is modified to

oree

Fg=|-Kgdalss-[ Mag] (39)

The connector force vector , which is given by equation (38), can now be written as

FL=KLdLs3 (40)
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4.6.7 Force Analysis for the Low Frequency Model

Another model that can be used is the one that describes the connector’s low frequency
mode of operation ( see Section 2.5 ). In this model, the coupling stage is active while the
decoupling stage is deactivated by setting the decoupling damping coefficient to a very low

value (C 4 = 0). In this case the resultant forces of masses M ¢ and M ;, remain the same.

The resultant force acting upon mass M ¢ , which is given by equation (32), is modified to

Fa=1-Kada)ss-[ Maglk 39)

The connector force vector , which is given by equation (38), can now be written as
Fr=[Cc(H-L)+Kcdelss (a1)

This connector model is used when the system velocities are low and there are no

disturbances applied to the platform as explained in Section 2.5.

4.6.8 Force Analysis for the High Frequency Model
The final model that can be used is the one that describes the connector’s high
frequency mode of operation where the coupling stage is inactivated by setting the coupling

damping coefficient to a very high value as discussed in Section 2.5 (C. = °°). By using

a high value for the coupling stage damping constant, this stage is made to behave as a rigid
element. The force will be completely transmitted through the stage without being deflected

(H=L). In this case the resultant forces acting upon masses M ¢ , M 4 and M p remain the

same. The connector force vector, which is given by equation (38), can now be written as

FL=|Ca(D-L)+K.5L]s; (42)



CHAPTER 5
PARALLEL MANIPULATOR DYNAMIC MODELING

As mentioned before, the dynamic model of the spatial parallel manipulator is needed in
order to perform an inverse dynamic analysis. This analysis will determine the force,
power and speed of response of the system actuators based on the desired task (based on
the motion planning). This will help the designer to properly select the actuators, the
dimensions of the manipulator, and to determine the values for system parameters such as

the mass of the platform and the connector stiffness.

5.1 Selection of a Dynamic Formulation Method
The selection of the method for generating the system equations of motion is critical in
the development of a dynamic model. Although the final set of equations of motion must
be the same regardless of the method chosen, the difficulty of setting up the equations of
motion depends on the method used. It is clearly desirable to choose a method which will
generate the equations of motion in the simplest manner in order to reduce the amount of

work and to avoid mistakes and.

S.1.1 Newton-Euler

The Newton-Euler method has been used for the dynamic analysis of the platform [5.1,
5.2]. One limitation of the Newton-Euler is that it becomes more cumbersome as more
rigid bodies are included in system model. Another limitation is the workless constraints
are included and have to be eliminated further on through some mathematical operations

which can involve a considerable amount of work .
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3.1.2 Lagrangian Dynamics

The basic concept behind this method is that the change of energy of a system is equal
to the nonconservative forces applied to the system [26]. Nonconservative forces are
basically external forces and frictional forces (such as viscous damping). These forces
increase or decrease the energy level of the system. This method has been applied to a
platform system to develop numerical simulations but not for deriving the explicit equations
of motion [9, 10].

The energy of the system to be analyzed is described by the Lagrangian

L =KE-PE

where KE is the kinetic energy of the system and PE is the potential energy . The
equations of motion are obtained by applying the following equation for each independent
displacement variable of the system

d\ag;/  aa;

where q j is the generalized or independent displacement variable j, and F j is the
generalized nonconservative force along the generalized displacement q;. Since the

potential energy is only a function of the displacement variables, the above equation can

also be written as

d

dt

F;

aKE) A KE-PE) _
aqj aqj

The platform system has six independent displacement variables to describe the
location of the platform and three for each connector. The system independent
displacement variables are the location of the platform (position and orientation) and the
displacements E, D and H as discussed in Sections 2.4, 2.5 and 3.3.
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The kinetic energy for the platform system is given by

Mp
2

[ g 61
KE="2 (Ve Ve) + 0T+ w0 +Y | 0l
|

where M, M, My, My, [Ip], [Ie], [Id] and [Ib] are the masses and the inertia tensors

of the platform and the connector rigid bodies respectively ( see Section 2.5 ). The
potential energy of the platform system is given by ( see Section 2.5 )

(M E+MygD+Mpbl )gsj3, +

] 2 2!
Kd:+Kadg+Kidj | .
cO¢ (éd l_{_+Mpg_ gk

[

== 3

The partial derivatives required to determine the equations of motion using the Lagrange
formulation can prove to be cumbersome to obtain for a parallel manipulator. As an

example consider the fourth term of the kinetic energy expression

The angular velocities o | and w 7 are functions of the velocity of the centerpoint and

angular velocity of the platform as derived in Section 3.4

The partial derivative of this term of the kinetic energy can then be written as

alt

r r 373
1 ! d d ]
M. Xe'y_el)|)=Z§Me: E—aE"‘Ez(wl (.01+w2 (.02)“
2 i L1 g oq;  odj )|

"

i i

0q;
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where the partial derivative of the angular velocities « | and w 7 are given by

aq; L laq; \dqj |

: <
0wz _ | 6!c+(6_@xRpc) sas
ag; L[ aq; \aq;

Once the partial derivatives of the kinetic energy have been derived, the time derivative of
the resulting expression must be determined. This is a very tedious and time consuming

process since the vectors R e , $2 and s are time dependent functions of the location of

the platform. Similar complications arise when obtaining the partial derivatives of the
kinetic energy and the potential energy expressions with respect to the displacement
variables since there are many terms which are not simple functions of the independent
displacement variables.

The Lagrangian method has been successfully applied to serial kinematic chains and the
explicit equations of motion have been obtained for some serial manipulators (13, 14]. The
main reason is that the velocities and positions of all the rigid bodies of the system, which
are required for the kinetic and potential energy expressions, can be written as simple
functions of the independent displacement variables and their first time derivatives. In the
case of the platform the velocities and positions of the rigid bodies are not simple functions
of the location and velocity of the platform as shown in Sections 3.3 and 3.4. This
complicates the process of obtaining the partial derivatives required for the equations of

motion.

5.1.3 Kane’s Method

The method used in this thesis for deriving the dynamic model is what is known as
Kane’s Method for Dynamic Analysis [27]. A brief explanation of how to use this method
is given in the appendix of this thesis. The equations of motion for the dynamic model for
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a system with “w” elements (bodies & particles) and “n” degrees of freedom can be

obtained by using the following equation

had aX - had aQ N .
Y Gor-{Ej-EjD+Y Gl -{Li-IjH=0 k=12,...n (]

ji=1 j=1

where F* jand T jarethe Inertial Force and Torque respectively, and can be calculated by

Fi-mjA; & Tj=a;j Ij+wjxLj;

This equation must be setup for each of the degrees of freedom of the system. In order to
obtain the dynamic model, expressions for the following terms for each body must be

determined

dyV ;
N : , the velocity partial derivative of body "j" respect to the kth generalized speed

ow ; .
5% , the angular velocity partial derivative of body "j"respect to the kth generalized speed

"n_mn

F;, the resultant force vector acting on body "j" at a given point "c

T ;, the resultant torque vector acting on body "j", about the point "c"

n"en "_n

A j, the acceleration vector of body "j" at a given point "¢

m j, the mass of body j

W j , the angular velocity vector of body "j"

a ; , the angular acceleration vector of body "

Ij", the inertia dyadic of body "j", about the point "c"

5.2 Mobility Analysis

The first step in setting up the equations of motion is to determine the degrees of
freedom of the spatial parallel manipulator or platform. The platform ( see Figure 5.1)



80
itself has 6 degrees of freedom since it is a rigid body in space free to move when all the six

actuators are operational. Each connector adds on three more degrees offreedom as
outiined in Section 2.5 and shown in Figure 5.2. Since there are six connectors, the
system has a total of 24 degrees of freedom .

The next step is to select the generalized coordinates required to completely describe the
system configuration. Six variables are required in order to locate the platform in space.
The vector C will be used to describe the location of the centerpoint of the platform, which
accounts for three of the degrees of freedom. The rotation matrix [R] will be used to
describe the orientation of the platform in space, which accounts for the other three degrees
of freedom for the platform. A detailed description of C and [R] is given in Sections 3.1,
3.3 and 3.6.

platform
coordinate

system
=y

Ly

base
coordinate

system —Zp,
o)

-4 connector

[
]

Figure 5.1 - Spatial Platform
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Each connector requires three generalized coordinates in order to describe its
configuration (see Figure 5.2). The first one is the actuator displacement, E. The second
is the displacement at the point joining the connector (o the coupling stage, H. The third is
the displacement between the decoupling damper and the decoupling spring, D, as shown
in figure 5.2. In summary, the generalized coordinates used to describe the complete
system are (the letter “q” will used to designate the generalized coordinates)

Figure 5.2 - Connector Model with Generalized Coordinates
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(q1)i=(E)i; (q2)i= (H)i; (q3)i=(D);j

where the letter “i” indicates the number of the connector, i = 1 to 6. The platform will be
described using the following Generalized Coordinates

C=[XeYcZc]l=q19=Xc, q20=Yo, q21=Z¢

[R]=f(9xyey,ez)=q22=6x,q23=9y,QZ4=ez

5.3 Generalized Speeds, Velocity and Acceleration Analysis
The next step is the selection of the Generalized Speeds. These are variables used to
describe the velocity of each body in the system and are a function of the Generalized
Coordinates and their first time derivatives. Although there are more than one possible set
of Generalized Speeds, the number of elements in each set must be equal to the number of
Generalized Coordinates.

5.3.1 Generalized Speeds

The letter “u” is used to designate the Generalized Speeds, which are functions of the
Generalized Coordinates and their first time derivatives. A simple choice is to use the first
time derivative of each Generalized Coordinate, q j, as the Generalized Speed u j. For each

connector they will be the first time derivatives of the Generalized Coordinates E,H & D

=%

(u)i=4(B)is (uz)i=E(H)i; (u3)i=G(D)i

.

t

The Generalized Speeds of the vector C are the first time derivatives of the centerpoint

coordinates

Q(Cz)=ch= uzg

Q—(Cy)=ch=u30, dt

(Cx)=vcx=ul9, dr



The elements of the platform’s angular velocity vector @ =[wx, Wy, w2 |T about the

axes of the Base Coordinate System are used as the Generalized Speeds of the rotation

matrix {R] and thus

5.3.2 Velocity Analysis

Each of the bodies on the connector will have a similar expression for their velocity

vectors and the same expression for their angular velocity vectors. The angular velocity

vector for the rigid bodies of the connector is given by ( see Section 3.4 )

The velocity vectors of the base mass, the decoupling stage mass and the actuator mass,

(see Section 3.4 ) are given respectively by

Vo=t ((Les 2 (Rpexs2)] 52

<

(3)

(4)
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(Vcos ) +@*(Rpexsaz) s a3 (5)

qniles

Using the definitions for s | , 2 and s 23 given in Section 3.3, the angular velocity vector

® 12 can also be written in terms of the Generalized Speeds defined above

0 T83, s3y
Y19 [og g U |_ Yar |
_02[2 = T 3z °23x | + I . 532' 523y +T 53z 273z | +
$23x 53y S3y S3y S237" S3y
+ . -
Rpcy Rpcz 53z (Rpcx By)

22 "'3 _ .
(Rpcz pcy s237) S3, (Rpcx SZBQ S32 | *+
Reey $232 = Rpez S23y) *S3y Recr s23x Roex S232) “S3y

- Rpcx. S32
u"l
(Rpcy. S23x ~ Rpcx' 523)) "S32 (6)

(Rpex S23y ~ Rpey S230) S35

The velocity vectors Vi, V g and V¢ can also be written in terms of the generalized

speeds defined above
[ (5..)? $23y 523
bl <ZBQ bl N
2 2
Vo = v Sy S | o T| (5397 + (Sazy) *
| $237523x $23y"S232 ~ S37 53y
5232' $23x
bl . - -
UZI'—E’ S23y $23z = S32 SSy +
2 2
| s * G




(Rocy S232 = Rpez’ S23y) “S23x
bl 2 2
2| (o 53y~ 539755 Roey = [ G5 * + Gasy)* | R | +
H (s3y) + (S22 : ]’Rpcy + (83y°S3; = 52377 523y) 'R
ol (Rpcz pcx S23b s23)(
a3 _I_—, (s3y' $32 ~ S23y 523) Rpcx + So3e s23y Rpcz +

[~ ) = C39) | Roen + 52355237 Rpes

(Rpcx° s23y - Rpcy' sZB:D "S23x

bl 2 2
Y T [ (839 + (523y> ] Rocx = S23¢ S23y° Ry (7)
i (523y' s23z - S3y' SBD ) Rpcx - 523x' sZ3z' Rpcy ]
2
S3x E (523Q
Vo =y |Ssy | + Uo7 | Sosy S2ax
s .
3z 5232 523x
523y' S23x S232"S23x
u D, sDz+ 5. )% |+u D So3y"S23; ~ 53,53 +
20 L (3 (23)) 21 L y &£z z
2 2
Sy3y"S232 = S37 S3y (53)) + (3239
Rpcy $232 = RpczS23y) “S23«

D
Uyo = | (S237° 523y ~ S3y° S3D'Rpcy - [(539 * (523;)2].11"“ il

[ (53))2 + <52392 ] Rpcy + (s3y- S3, = Sy3,° 5239 -Rpcz
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(Rpcz' S23x ~ Rpcx' 523» "So3x
D .5 — . . + e *
1123‘t‘ (S3y S12 s23)' S232) Rpcx $23x s23y Rpcz +

[- (3239 ? - (s3y) 2 ] Rpcx + So3x S232° Rpcz

Rpex S23y ~ Rpey S230) “S23x
D

24.f' [ (S3D ? + (523)() : ] Rpcx ~ Sp3x° 523y' Rpcy (8)

(szsy‘ $23z ~ S3y’ $32)° Rocx ~ S23x 5237 Rpey

u

S 2
3x <523,D
V =u-|s +u E Sha." S
e 1| 3y 19°T | 23y “23x

S .
3z s23z S23x

$23y" S23x 5232 S23x
2 2 Els - 8. — S-S .
G+ (Sazy)” |ty |72y B2 73273y

| 23y 5232 T 837 S3y Gay) R :

[}*]
o'
el

Rpey 232 ~ Rpez S23y) "S23¢
. <523z' Sy3y ~ S3y’ 339 . Rpcy - [ (8392 + (523),)2 ] Rpcz +

[ G + G [ Rpey + (g 532~ 5307 5239) "R

=l m

(8]
(]
.

(Rpcz. S23x ~ Rpcx' S239 "S23x
| (Say 83~ Sy S932) "Rpex * 5235 523y R | +

_[- () = (53 y)l]. Roce + S3x 3z Ry

'3
u'
alley




87

(Rpcx pcy s23:D $23x
E
24T (539 (523>D ] pex ™ S23x" S23y Rpey ©

l_ 23y' 5232 s3y 839 Rpcx = So3x"S237 Rpcy

Using the Generalized Speeds defined previously, the angular velocity and the velocity

vectors for the platform are given by

Yo Uy
V.= (U W = |Uy (10)
Ui Uy

5.3.3_Acceleration Analysis

As derived in Section 3.5, the angular acceleration vector & 12 for all the rigid bodies of

the connector is given by

QR =as+ a8yt 01wl saxsy | (11)
The acceleration vector for the mass M p can be written as
Ap=bllaisy+tazsp+rwiwals; s3lsa! (12)
The acceleration vector for the decoupling stage mass M 4 can be written as
Ag=Ds3+ 2D(wis+w2so3)+D(arsa+a2sas)+
D[ 201wa(s | s3)sa+wilsy '§3)§1'(¢0?[+°0?2')§3] (13)
The acceleration vector for the actuator mass M ¢ can be written as

Ae=Es3+ 2E(w1sy+wasys)+E(arsy*tazsqs)t
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2

El 20 wa(s, 530850+ 03(s, s3)s;-(0]+w})s;] (14)

The angular acceleration and acceleration vectors for the platform are given by

ACX
A .= |Ay a = |a (15)
Acz

a

5.4 Velocity and Angular Velocity Partial Derivatives

One of the distinctive features of Kane’s Method is the use of the velocity and angular
velocity partial derivatives of each body with respect to the generalized speeds. These
partial derivatives define the directions of the instantaneous translational and rotational
displacement of each body. A more complete explanation is given in the appendix.

As shown in Section 3.4, the connector angular velocity vector w 12 can be written as

This angular velocity vector is a function of the Generalized Speeds u 19, u20, u21, u22,
u 23 & u 24 as shown in equation (6). The angular velocity partial derivatives for these

bodies with respect to the generalized speeds u ; through u s are (k=1 to 3)

°() =0 (16)

Suk

The angular velocity partial derivatives the generalized speeds u 19 through are u 24



dw

—12=[52x§1+523x§2]LL

du 9

6 2 - 1

=12 =*LSzy§1+Sz3y§2}f

du20

ow r

du 2¢
dw . |
W2 _ (s 1 (Rpcxsa)x * S2(Rpcxs23)x} ‘}:
du
dw - i
W12 _rg [(RPCXSZ)Y + sz(RpchZ:;)yj {—,
du 23
0w 12 =/s [(chx§2)2 + Sz(gpcx523)ZJ L
du24

(17

(18)

(19)

(20)

(21)

(22)
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where (R pc x82) x, v, z are the respective x, y and z components of the vector product of

the vectors Rpcand s2; and (R pc X823 ) x,y, z are the respective x, y and z components

of the vector product of the vectors R pc and s 23 . These velocity partial derivatives can be

also be written in their expanded form

5 (w,,)

du g

0 (912)

6"20

0
1 |- .
=1 $23x 532
$23x" S3y
—532
1 = -S
=1 S8y %3

S23y' S3y

(17.a)

(18.a)
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=1 ~S53,S3, (19.a)
6[121 ]
$23, s3y /
d({w ) { Rocy S3y ¥ Rpcp'S3,
=12
. =T (Rpcz Sa3y Rpcy- 3239 *S3, (20.a)
u
2 | Recy 5232 ~ Rpcr S23y) 83y |
5 (w ) 1 [ -Rpcx' 53y
=12
5 = L (Rpcx' $232 Rpcz SZSQ "S32 (2l.a)
u
2 | (Rocz S23x = Rpex$237) “S3y |
6(‘*’ ) 1 | e e
=12
5. L Rpey S23x ~ Rpex S23y) "3 (22.2)
u
2 | Rpex S23y ™ Ry S230) "3y |

The velocity partial derivatives of the base mass with respect to the Generalized Speeds u |

through u 3 of each connector (k=1to 3 ) are

d

vy
du

(23)
k

Using the expression for V p derived in Section 3.4 and the definitions of the Generalized
Speeds, the velocity partial derivatives of V p, with respect to the Generalized Speeds

u 19 through u 24 can be written as

(o]

Vb

ui9

=[s9x82+523x $23} (24)

o
—<



N
|
o

_=[52 $2+893 _S_23'Q' (25)
duzg y y IL
v .
—~6_b={52z§2+523z§23i% (26)
dusgy
dV - .
=b = s, (Rpcxs2)x +§23(_11ch§23)be% (27)
duo
oV c .
—='—b—=:_§2(chx§2)y +§23(ch"§23)y}b*ﬂ (28)
du o3
dV . ,
=b = {55 (Rpexsz)z + 523(Rpexsps)a] B (29)
du 24
These velocity partial derivatives can also be written in their expanded form
523)2
3(Y,) vl Caax 9y
S = 17| S23y S23x (24.2)
Uie
$232 S23x
S23y" S23x
6@9 =E- sz)2+ S )2 (25.a)
Su L (3 (233' ’
20 Syay Soq, = S5.°S
23y “23z 3z "3y
$232 S23x
5(¥ bl
(vb) = —-| S23y'S23; T 83783y (26.2)

du L

21 <s3y) 2+ (5239 2
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5 ) (Rpcy' $232 ~ Rpcz' 823}) "S23x
.~ bl
& 7| Gz 523y 7 839733 Rpey ~ [ CORECT 2]'Rp‘z (27.2)

du
* I.[ (3y) T+ D) : ] Rocy + (S3y'S3, ~ 537 S23y) " Roez

5 ) (Rpcz Sa3x ~ Rpcx' SBD "S23x
& %‘ (S3y'332 ~ S23y 3232 "Rpex ¥ S23x 23y Rz (28.2)

du "
>3 [- (3239 T (53)') 2 ] Rpcx + S$23x° Sz Rpcz

(R "Sazy T Rpcy' 523x>'523x
5(¥p) bl =

= T [67* 6 [ R~ Sz sy Ry | 99

24 . - . . - . .
(323y $232 s3y S3D Rpcx $23x" 5232 Rpcy

The velocity partial derivatives of the velocity vector V g4 with respect to the Generalized

Speeds u | and u 2 of each connector are given by

"X _, M _, 30)

du, Bu,

The velocity partial derivative of the velocity vector V 4 with respect to the generalized

speed u 3 of each connector is given by
S3x

" _ |

S3z

(31)

3y
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The velocity partial derivative of the velocity vector V .. with respect to the Generalized

Speeds u | of each connector is given by

s3x
d(V
6ul
SE)z

The velocity partial derivatives of the velocity vector V e with respect to the Generalized

Speeds u | and u 7 of each connector are given by

X _, 2 _, )

du, du, -

The velocity partial derivatives of the velocity vectors V ¢ and V ¢ with respect to the
Generalized Speeds u 19 through u 74 are the similar to those for the velocity vector V p, the

difference is that instead of bl the displacements D and E are used.
The velocity partial derivatives of the centerpoint velocity vector V . with respect to the

Generalized Speeds u |9 through u 7 are

1 0 0
5(¥ 5 (¥ 5(Y
Yo) = [0 Yo = |1 Yo = {0 (34)
u 0 1

d du 0 du -

19 20 21

The angular velocity partial derivatives of the angular velocity vector w with respect to the

Generalized Speeds u 27 through u 24 are

3(w) _

du

ale]

0 0
JORNY 5@ _ [, 5)
1

5u2 0 0 du

o O -

21
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The velocity and angular partial derivatives of the platform with respect to the remaining
Generalized Speeds are zero.

5.5 Setting up the Dynamic Model

As stated in equation 1, the dynamic model for a system with “w” bodies and “n”
degrees of freedom can be generated by using the following equation

Z(m “{Ej-Ej}+ Z(“’-{TJ-TJ}) 0, k=1,2,.
i=t j=1

this equation can be simplified somewhat by using the following expressions

(36.a)
Ti=1T; - (aj* 1)+ (wjx 5+ oj)] (36.b)

where expressions for the resultant forces F j, torques T j, angular velocities W j,

accelerations A jand angular accelerations g j for each of the bodies of the spatial parallel
manipulator system are given in Chapters 3 and 4. Equation (1) can now be written as

y (. ): (22 L.1p=0; k=1,2.,0 (@7

-J
iz Ou g

The force term is known as the effective force, E'; ; the torque term is known as the

effective torque, T°;.

5.5.1 Formulating the Dynamic Model

The spatial parallel manipulator system has 19 bodies (the platform and three bodies for
each connector) and 24 degrees of freedom (w = 19 & n=24). By using the above
expression, the model of the spatial platform can be generated. This model has 24
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equations. The general form of the kth equation of motion for the spatial platform is

8 f((aidl)i (E
Oug -

(6? 12)i '(I'b)i)!*'

-;: ;’(@_z_m .(E-b)i)+

=lL auk

(0¥ g, 00
Gur Eet Gug ICI—O (38)

where the letter “i” designates the ith connector (i = 1 to 6). The first six terms of this

equation describe the motion of the mass M ¢, the second six terms describe the motion of
the mass M 4, the third six terms describe the motion of the mass M, and the last term

describes the motion of the platform itself.

Although the use of equation (38) for setting up the model may seem to be very time
consuming and tedious, it becomes rather simple since many of the velocity and angular
velocity partial derivatives are zero. For the first degrees of freedom of each connector (6
dof in total) all the velocity and angular velocity partial derivatives are zero except the
velocity partial derivative of the velocity vector V ¢ as indicated in equation (32). The

equation of motion for the first degree of freedom of each connector, which generates the

first six equations of motion, can be written as

V)i (v :
((_ﬁc)l-(ge)i)w; for i=1106 (39)

The equations of motion for the second degree of freedom of each connector is zero

since the effective forces for this degree of freedom are zero (there is no mass at the point
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of displacement H ). This is a problem since the dynamic model requires 24 equations.
This problem will solved by defining some auxiliary equations later.

For the third degree of freedom of each connecior, all the velocity and angular velocity
partial derivatives are zero except the velocity partial derivatives of the velocity vector V g as
indicated in equation (31). The equations of motion for this degrees of freedom, which

generates the next six equations of motion, is given by
(0¥ a)i "Vo o -
Wk—“(ﬁd)‘ =0; fori=ltw6 (40)
The equations of motion for the last degrees of freedom are more complicated since
most of the velocity and angular velocity partial derivatives are not zero as was the case in
the connector degrees of freedom. The general equation of motion for the last six degrees

of freedom, which describes the translation and rotation of the platform about the X, Y,Z

axes is given by (for k = 19 to 24)

+

V)i ' S ((8V q); ' S (V)i vy,
(OVe) '(Ee)i)+2(( i) '(Ed)i) +i2 (’—i'(—Eb)ﬁ

Ju = Ou g

Since the velocity partial derivatives of w for the Generalized Speeds u 19 ,u 20 and uy; are

zero, the general equation of motion for the translation of the platform can be written as
(fork=19to021)

|+ 3 ((O¥b)i

=\ Ouk Eul

+
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Since the velocity partial derivatives of V . for the Generalized Speeds u2; ,u23 and u24

are zero, the general equation of motion for the translation of the piatform can be written as
(for k =22 to 24)

g (0¥e)i (F )1') (GVd)l . 1]) +2 (OVb ( 'b)i)*'

auk Cug

(9w 12)i T+ T T, )i 2 .7T.=0 (42

Ouk

i=1

3.5.2 Effective Forces
The difference between the resultant force acting on a given body, F j, and its inertial
force, mj A ;, is known as the effective force, F’;. The resultant forces acting on each

bodies of the spatial manipulator were derived in Chapter 4, the accelerations for each body

were derived in Chapter 3. The effective forces for the platform and the bodies on each

connector are given by
Fe=Fc-McA. (43)
Fy=F4-MgAg (44)
Fy =FEp-MpAp (45)
Fc=Fc-MpA, (46)

These equations can expanded using the expressions for the resultant forces and

accelerations derived in Sections 4.6 and 3.5 respectively

' r
1
L

Fe={Fa-CE-KLBL]53-[Meglk -

MeEs3-2MeE(wsp+w2s93)-MeE(a182+02893)-
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McE(2wiwa(s;  s3)so+0i(s s3)s -(0}+wd)s;) @7
Fy=1{-CalD-L)-Kgdg| s3-[ Mggik-
MgDs3-2MgD(w sy +wasq3)-MaD(aisa+a2sq3)-

MdD(2w1w2(§1 *s3)s,+wils '§3i)§1‘(w21+(0%!)§3) (48)

Fy,=CE{-F;|s;-{Mpglk-Mpbl(asy+a2sy)-

Mpbl(2w;wa(s,  s3)so+wi(s; s3)s -{0}+wdls;) ©9)

6
Evc=I:Eg+_Eext+ Z Fiss| - MpA. (50)

i=1

3.5.3 Effective Torques
The difference between the resultant torque acting on a given body, T j, and its inertial

torque, mj A j, is known as the effective torque, T’;. The resultant torques acting on each

body of the spatial manipulator were derived in Sections 4.4 and 4.5, the angular velocities
and accelerations for each body were derived in Section 3.4 and 3.5. The effective torques

for the platform and the bodies on each connector are given by

5

Te=Te-lap-le+wpxle "wp) (51)
Tyg=Ta- ap-Id +0pxId w2 (52)
Ty =Tp-lap-Ib" +wpxIb ~wp| (53)
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6 )
T. =[Iext+ Y Fi 503]-i_g'lp'+gxlp'°m (54)
i=1

1=

where Ie”, Id”, Ib” and Ip” are the body inertia dyadics ( see the appendix ).

5.5.4 Inertia Dyadics

The inertial properties of a rigid body in space are usually described using the inertia
tensor. A more compact and useful method is the inertia dyadic [27]. A dyadicisa
juxtaposition of vectors, a inertia dyadic is the use of a dyadic to describe the inertia of a
rigid body. The inertia dyadic for a body can be defined in term of its principal axes and
principal inertias, as explained in detail in the appendix. The principal axes 23,82 and s 3
for each of the rigid bodies on the connector are shown in figure 5.3. The inertia dyadic
for the base inertia, decoupling stage inertia and the actuator inertia are given by

Ib"=Ibxx[sp3lls3]+Ibyy[sriisri+bzls3ils3] (55)
[d"=Idxx[S23i(8p3) +Mdyyis,lispi+Idgissiiss! (56)
s3] (57

le"=lexx[s23)[so3l+1eyyisqilsai+lemiss]

where le xx , Idyxx, Ibxx,leyy, Idyy, Ibyy,lez, Id zzand Ib 5 are the principal

moments of inertia of the connector rigid bodies. The inertia dyadic for the platform is

given by

Ip"=lpxx X[ Xm]+ Py Ym![¥Ymi+ IpzlZnllZn (58)

where Ipxx , Ipyy and Ip ,z are the principal moments of inertia of the platform.
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Figure 5.3 - Principal Axes

5.6 Deriving the Equations of Motion

The dynamic model of the platform system is described by 24 equations of motions.
These equations are obtained by using equation (1) for each of the degrees of freedom of

the system.

5.6.1 Equation of Motion for the mass M ¢

The equation of motion for the mass M ¢ can be obtained by using equations (32), (39)

and (47)

av R ' r . r 1
(a'ﬁi)" ‘(Ee)i)=(z_Fa-CtE -Ki81)s3-[Meglk)-s3

(-McEs3-2McE(w s+ w2s93)-MeE(arsy+azsy))-ss+

(-MeE(Zwlwz(_s_l ‘§3’).S.2+w?i(§1 ~§3)§1-(w%+w%)§3))-§3=0
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Figure 5.4 - Hooke Joint at the base of the connector

As mentioned in Sections 3.3 and 3.4 the vector s | , which has been selected to be parallel
to the fixed X axis, describes the first axis of the Hooke joint of the HPS serial
manipulator ( see Figure 5.4 ). The vector s 7 describes the second axis of the Hooke joint
and is the resultant of the vector product of s | and s 3. The vector s 3 is parallel to the
connector itself and § 23 is the resultant of the vector product of s and s 3. The evaluation

of all the equations of motion will required the following scalar products

Since the vectors s | and s 7 are perpendicular, and s s 3 and s 23 are mutually

perpendicular the following scalar products zero
$2°83=0; $93°83=0; s53°8,=0; s;°52=0 (59
Since the vector § | is parallel to the X axis, the remaining scalar products are

S1°8S23=S23x 5 S81°83=83y (60)
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By using equations (59) and (60), the equation of motion for M ¢ can be simplified to

2 Ele}+wd)+CiE+KLBL (6

oM
[7¢]
W
N
’.
tn
€
-t
—~~
[ 7]
(¥
E
~—

The first term on the right hand side indicates that the actuator has to accelerate the mass

M. This acceleration is the sum of the body’s own acceleration, the gravitational

acceleration and the centrifugal acceleration. The actuator also has to move against the

friction force its generates and has to deform the K |_ spring.

3.6.2 Equation of Motion for the mass M ¢

The equation of motion for the mass M 4 can be obtained using equations (31), (40) and

(49)

(%Zi Fd)) ~Ca(D-L) -Kadgisz-Mgglk)-s3+

(-MgDs3-2MgD(w1S2+w2s23)-MaD(a1sa+a2s03)) 83+

(-MaD(201w2(ss3)s,+w}(s) *s3)s;-(w]+w})ss)) s3=0
Using the equations (59) and (60), this equation can be simplified to
M f & 2 2 2 2 ] X f
dlD+gs3,+Dwl(s3,)%-Dlw}+w3) | +Cy(D-L)+Kgdg=0 (62)

Although the decoupling stage does not have an actuator to move its mass, the energy is
supplied by external sources such as the rotation of the connector which produce the
centrifugal terms and the extension of the decoupling damper. These forces move the
decoupling stage against gravity , accelerate the decoupling stage mass, and move the

decoupling stage mass against its friction and stiffness element .
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3.6.3 Platform Equations of Motion

The platform equations of motion can be divided into two types: those that produce the
transiation of the piatform and those that produce the rotation of the piatform. The generai
forms of the platform equations of motion are given by equations (41) and (42). Equation
(41) must be evaluated for the generalized speed u 19, u20 and u 2;; and equation (42) must

be evaluated for the generalized speed u 22, u 23 and u 24.

5.6.3.1 Translation along the X, Y and Z axes

The general equation of motion for the translation of the platform along the X Y and Z
axes is given by (k =19, 20 and 21)

6 0Ve)i ' 6 oV a); . 6 av !)' '
igl (( aui)l .(_F_e)i) +i§[ ( Oui)l ‘(_Ed)i +i§[ (—511(,1—1 '(Ed)i +
6 . L '
) l[(a_gjuli)l .(Ie+1d+1b)ij . ‘(’%E CF.=0 )
i=1

The first three terms of the above equation can be evaluated using equations (24), (25) and
(26) for the velocity partial derivatives with respect to the generalized speeds u 19 , u20 and

u2;. These velocity partial derivatives have the following general forms

a—Y__b = bl +

0¥d _ D; . 3
Gue LLUk§2 Qx s3]
Ve _ Er 5
duL —LLUk§2+Qk§23J

where U g =s2x,U20=52y,U21=52,and Q 19 =523x , Q20 =523y, Q21 =523z.



Using these general forms for the velocity partial derivatives, the first three terms of

equation (63) can be expanded to

(Ve . (F )) Z ((avd:)l (F d)i),;i (a_X_L)_i.(E'b)i)=

l Oug = Juk

2 (IFa-CE-KLBL]s3-[Meglk) *E[Uksy+Qisopl +

i=1

mm

6
Y (-McEs3-2McE(wisy*w2sas) )'%[Uk§2+Qk§23j +

i=1

6
Y -McE(aisy+azspn+2wiwal(s, ‘§3)§2i)'%[Uk§2+Qk§233+
i=1

6
Y (-McE( wi(s s3)s-(0]+wils;))- % Uksp+Qksaz: +

1=1

6 - . . 1 . '
Y (I-cuD-L)-Kadaiss-[Magik)PlUksy+Quspi+
i=1

6
Y (-MgDs3-2M¢D(wis2+w2s) ).

i=1

%EUk§z+Qk§23? *

6
Z-MdD(a1§2+a2§23+2031032( '53)52) Uk52+Qk523r
i=1

6
Y (-MaD( 0}(s; s3)s;-(w]+wd)ss)) Pl Uksy+ Qusoyl +

i=1

104
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([CeE-Frlss-[Mpglk) -Pl{Uksa+Qusosl +
1

1o

1

6
Y -Mpbl(arsp+a2sn+2wiwas '§3)§2i)°bf1[Uk§2+Qk§zsl+

i=1

6
Y (-Mpbl( wi(s; -s3ls;-(0}+wils;)) *BliUks,+ Qus ]

i=1

As given by equation (59), the above equation can be simplified considerably by the fact
that many of the scalar products required for its evaluation are zero

§7°83=893°83=823°82=8°82=0;

The equation of motion can then be written as

S,  TM.E+MgD+ Mpbl]. .
Z-gif £ ‘i b JiUk52z+Qk823zJ}i-

S [2IM.EE+MyDD] i
i e d e + b
; !L 3 [ Ukwi kazlji

§ T{M.E2+MyD2+ Mybl2
> ;L . dL . J[Ukou*erom_gi-

[ 2 2 2 1
{LM"E +MdL]? * Mpbl ] 2Ukwi w2 53x'i+

1

™Mo

[M.E2+ MgD2+ Mpbl?]
L

i 2 i
rL QWi S3xS23x | (64)
“1

i ™o

i=1
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The fourth term of equation (63) can be evaluated by using equations (17), (18) and
(19) for the angular velocity partial derivatives with respect to the generalized speeds u 19 ,

ugp and u ;. These angular velocity partial derivatives have the following general form

dwi2 _ 1 1

up - {LUks1+Qksal
where U j9=5s2x,U20=52y,U21=52,and Q19 =523x , Q20=523y, Q21 =523,
Using the expression for the effective torques given in equations (51), (52), and (53), the
fourth term of equation (61) can be written as

6 ' r - "
i; E?EL:L e )i ()i (@r)ix()is (@i |

where I1” is the sum of all the mass dyadics of the rigid bodies on the connector. Using
equations (53), (56) and (57) and the generalized form of the angular velocity partial

derivative, the above equation can be expanded to

i - Hxx ( (Q12)i’(§23l)i)((§23;)i.(Uk§lEQkSzé)i) )

i=1

6 -

? U + ! 1.;’ !
¥ M (LB QES2) (0 10)ix(s 23)0) (5 )i (@2 -
. L i B

i=1

26: Myy ( (Qlz)i‘(§2)i)((§2)i'(Uk§leQk-s-z)i) )

i=1
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Z ﬂyy[ Uklekazl) ((@r12)ix(s 2)i )j i*(@i2)il
i=1

Y Hal ) (s o) (ss)i- (UEEL7Qs2) ).

i=1

[(s3)i*(wil

6 : i
Yy Ny (Uk§lL+Qk§2),‘((@.lZ)i"(§3)i)
i=1 ‘ ! !

The principal moments of inertia of the rigid bodies about the X and Y axes are equal. By
using equation (59), which states that many of the scalar products required for evaluating

the above equation are zero, this part of the equation of motion can be simplified to

6 1

-2 iUk(lL(Hnskz*'nxx 523x2[)+2w1w2 > 23x 53 (Oz-Mxx) "
i=1" L L .
6 . « . , :
Yy Qk‘Ll Z Qk——— $23y S 3x (Ixx -Uzz) (65)
=1 " ‘l

i=1" i

Using equation (50) and the fact that the platform angular velocity partial derivatives for the
generalized speeds u 19, u 20, and u 7| are zero, the last term of the general equation of

motion can be written as

Xe , F,+F y i
du _g*’_ext*i;l(Fl.s.:il)l‘MpA.c

The equation of motion for translation along the X axis is given by (k = 19,
Ui9=s2x andQ 19=523x)

6
2 (FLsag)i = MpAcx + Fext, x +
i=1
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S [IMJE+MyD+Mppbll, 1
Z gt . E : 'SBX823ZIJ
i=1

6 [ M.E D | |

y {2LMeEEEMdDDJ Sy 02|+
—_ 41

—

M

S23x X2 | *
1

ir{ ME2+ MyD2+ Mpbl? |
i L

™o

1

S, [TM.E2+MyD2+ Mpbl?!
] L

2 R
©T $3x $23x 7 |

f ]
| S23¢ S3x - L (ﬂxx-ﬂzz')l + Z 523x L ], (66)
- i=1

Analogously, the equation of motion along the Y axis can be written as (k = 20,
U20=s2y and Q20 =523y)
6

Y (Frs3ay)i =MpAcy + Fexty +

i=1

[S2yS2z% 83y 523z! :

S TIMJE+MgD+ Mpbll,
Y e S +
i=1
6 [ Al . . H
| 2IM.EE+M4DD] ]
le S 3 d [szyw1+s23yw2}' +
1=
6 _' 1‘
i=1‘ L i
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}'LM E2+ MyD2+ Mpbl? |-

| L L [

™o

2w1wzs3xszy+w1 S3x S23x Sz3y|x +
i

6 6
[
Ell Szy L (IluS3x +HXX $93x~ |)' + Zl ‘523),——[‘ nxx‘
i= i=

| 252y wl‘-°2523xs3x (Hu‘ﬂxx)}.“’
‘1

N oo
| Sty |

i=1

6 1 1

Z ES23ys3x (nxx ‘ﬂn)l (67)
i=1 "~ i

Analogously, the equation of motion along the Z axis can be written as

Z (FLS3;)i = MpAcz + Mpg + Fext,z +

i=1

6 1

Z g ME+MdD+Mbe»SZZ+s23-'E+

. ] L P
i=1

6 2] M.k 5D '

Z ?2LMCEE+MdDD‘(522"01"'52320’215 +
. L L i
i=1

6 2 2 k

Z § M. E+Mdll?+Mbbl Iszza1+5232azif .
i=1" i

S [IM.E2+MyD2+ Mybi2!; )
Z L “lzwlwzssxszz"‘wl53x523x323zi‘i+
i=l [ .
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6 6
Z IL SZZL“I:L (Dzs3x?+ Mxx SBXZ)L + Z lsﬁz%‘ HxxJ_"'
=1 1=

6

,
Z {zszzleZEBxs&t (Ilu'nxx);_*’
. 5
i=1
S w2 |
Z ‘L523zs3x—l_ll““(nxx ‘ﬂzz)Ji (68)

Using the fact that the coefficients U i and Q g are the components of the vectors s 2
and s 23, the equations of motion for the translation of the platform along the X, Y and Z

axes can be combined into a single vector equation

6
Z (FLs3)i =Mp(Ac+gk)+ Fext+* Egr+ Fran+ Foor + Ecentr (69)

i=1

where the vector F o, the connector gravitational force vector, describes the forces applied

to the platform by the gravitational acceleration acting on the masses M, M gjand M,

!rg[MeEH' My4D + Mpbl ]
L

(Sp,82 + Sy3pS23l| (69.2)
L L

For

[N -

i=1

The connector tangential acceleration force vector, F (ay , describes the forces applied to the

platform by the angular acceleration a 17 acting on the rigid bodies of the connector

| McE2+MgD2+ Mpbl2 + gy 2352+ Il 53,2 i
I X182 |
L -1

+

(==t
g
It
o

1
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| i
McE2 + MgD? + Mpbl? + i |
l L XX az2s -3 Ji (69b)

an

The connector Coriolis acceleration force vector, F o , describes the forces applied to the

platform by the Coriolis acceleration acting on the rigid bodies on the connector

[2IM.EE+M4DD], '
Ee = (ensg ¢ wz§23lj!, (69.¢)
1 1

Ecm'=

Mo

i

The connector centrifugal acceleration force vector, F cent , describes the forces applied to

the platform by the centrifugal acceleration acting on the rigid bodies on the connector

6 | 2 2 2 I
Fent = ¥ 35 (MeE + MD? + Mybl T I
— -1

6 2 2 2 !
y E2s3,((M¢E +1\11de + Mpbi?) wrwasy  +
— ‘1

6 ) .
y Szxszsx(ilu ) 12523J +
. L 1
1=1
8 25,3, 53, (Hgz-Txx) ]
Z I 23x 3xL z XX (-01032§2i_ (69.d)
b 8

i=1 "~

5.6.3.2 Rotation about the X, Y and Z axes

The general equation of motion for the rotations about the X, Y and Z axes is given by
(k=22,23 and 24)

“+

i (@L:L (E.)il

~ Ou k

LY [k Fd))+2 (ki (g,

= Oug



112

1Mo

duk '!+auk'1°=0 (70)

The first three terms of the above equation can be evaluated using equations (27), (28) and
(29) for the velocity partial derivatives with respect to the generalized speeds u 23 , u23 and

u24. These velocity partial derivatives have the following general forms

d¥yp _ bl 1
e L[Uk52+Qk523
oV . .
a—'u'“: = %LUk§2+Qk§23J
oV , .,
a:z = ELUk§2+Qk§23J

where the coefficients U and Qg are given by

Uz, Rpey $22 - Rpez 52y
U23 = (Rpc*s7) —' ! Rpez S2x - Rpex S2z

U
2 ‘Rpcx Say - Rpey Sax |
r h |"R S - R S 1
Q2 i pcy 23z pez 523y !
Qo =(R pe*823) =| Rpez $23x - Rpex $237 |
- Q24 | |

| Rpex S23y - Rpey 5234 |

The fourth term of equation (70) can be evaluated using equations (20), (21) and (22) for
the angular velocity partial derivatives with respect to the generalized speeds u 22 , u23 and

u24. These velocity partial derivatives have the following general forms
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Using equation (54), the fifth term of equation (70) can be written as

00 o0 _ 0w S . .
(flz'l‘c= ur 'I:Iext +.Z (Fisos)i - a-Ip'+ (w~p @)]

i=1

Given the fact that these velocity partial derivatives have the same structure as the
velocity partial derivatives with respect to the generalized speeds u 19, uzg and u gy,
equation (70) can be simplified using a derivation parallel to the one outlined in the
previous section. The equation of motion for the rotations about the X, Y and Z axes can

be written as

6
Z (FL§03)i=Iext+_T_p "'Igr‘*'Itan + Teor + Teentr (71)
i=1
where T eyt is the external torque applied to the platform. T’j is the inertial torque of the

platform which is given by

! OQ r A
Ip=aUk':’_Q'Ip+(.@_"!p'.@.%)§ (71.a)

The connector gravitational torque vector, T o, describes the torques applied to the

platform caused by the gravitational acceleration acting on the rigid bodies of the connector

SZZ(BPCX-S-Z) ! +

T. - v |8/ McE+MD+Mybl]
&= Z— L L

‘g[MeE+MdD+Mbbl}

5232(_Kpc"_5.23!)§_ (71.b)
L I

?Mo«
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The connector tangential acceleration torque vector, T a1, , describes the torques applied to

the platform by the angular acceleration a 17 acting on the rigid bodies of the connector

1
a1 (Rpexsa)! +
-1

S, [ ME2+MgD2 + Mpbl? + Iy 5932 + l 53,2
tan = ; 3

y . MeE2 +MyD2+ Mpbl? + iy,

i
T ag(gpcng,)‘;‘ (71.c)

The connector Coriolis acceleration torque vector, T .o , describes the torques applied to

the platform by the Coriolis acceleration acting on the rigid bodies of the connector

2 M EE+MyDD|
L

Teor [wi(Rpe*sa2)+wa(Rpcxsq3)li  (71.d)
-t

it Mo
N

i=1

The connector centrifugal acceleration torque vector, T et , describes the torques applied

to the platform by the centrifugal acceleration acting on the rigid bodies on the connector

= i ! S 3x S23x (MeE2+MdD2+Mbblz)

Tcent = 3 wi*(Rpe*s23) +
‘1

i=1 -

6

2 2 2
2S3x(MeE +l\[i[dD + Mpbl?) (;)1(.02(.3.pc"§2)},.+
‘i

pm——— e

6 |
L S3x (Mxx -Il5) 2 x
; ] X I w1*(Rpe -5-23)4:i +

6 - !
P So3x S3x (Il zz-Mxy) i
Z L 23x 3xL zz - Uxx wle(_Kpcx§2)_ii (71.e)
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5.6.4 Summary of the Equations of Motion for the Platform

The equations of motion describing the platform translation and rotation, equations (69)

and (71), can be combined into one single vectorial equation

6 ~ . . . . . .
Y (FIS3)i=Wext+ Wy + Wer + Wean + Weor + Weenr  (72)

i=1

where the vector S 3 is the Pliicker line coordinates of each of the connectors.
The vector ﬁext, the external wrench, describes the forces and torques applied to the

platform from external sources such as the cutting forces generated in milling operations.

The vector W p» the platform inertial and gravitational wrench, quantifies the forces

generated by the acceleration of the platform

o~ r A+ !
Wp= Mp(Ac*a) (72.2)

The connector gravitational wrench W gr describes the forces and torques applied on the

platform by the gravitational acceleration acting on the rigid bodies of the connector

6 r r 1 =
-~ M.E+MyD+Mypbl | 5 !
We = _Zl i‘gL = 3 $2782 gi+
1=
6 v 1 L
)) g MeE*MqD+ Mpbl, $232823 (72.b)
. : L 4
1=1
where the vectors are
S ’( S2 823 | 72
Sy=| , % Ly Su3=i,, 2 (72.¢c)
. Rpe= sy | Rpex$23
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The connector tangential acceleration wrench @ tan determines the forces and torques
applied to the platform by the inertial forces produced by the angular acceleration « 12

acting on the rigid bodies of the connector

S S 2 2 2 2 2 .
Wi = Z | McE” + MyD +Mbb1L+ Oxx Sp3x” * Mz s3¢ x182 *
i=1 "~ i
6 n ) o) 1
. MeE-+MyD-+ Mpbl-+ Ilx« o
; | —= 3 = a8 (72.d)

i=1

The connector Coriolis acceleration wrench @_cor determines the forces and torques

applied to the platform by the inertial forces produced by the Coriolis acceleration acting on

the rigid bodies of the connector

DAl - Yyl - L
f2LMeEEgMdDD“{w1§2+w2§23£j_ (72.¢)

1 - i

=
W
[N o)

'The connector centrifugal acceleration wrench @cem determines the forces and torques

applied to the platform by the inertial forces produced by the centrifugal acceleration acting

on the rigid bodies of the connector

6 1 2 2 2 L
Weent = ) | 355235 Mo EMdD * Mybt?) w3823 +

‘1

1=

+

1

wiw2S»

i ir253x(MeEz+MdD'~’+Mbbl'-’) s |

i=1
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lSBXS3X(nE'HXX") CO[(D?_SZ} (720

Equation (72) illustrates the high degree of coupling that exits in the platform equations
of motion. Each connector will have to produce a force that is a function of the location
and motion of the other connectors and the platform. The dynamic coupling is a function
of the system parameters such as connector length, moment of inertias and masses. For
light loads, the connectors do not have to be so strong which reduces the connector masses
and moment of inertias. For heavy loads, the connectors must be stronger and
consequently their masses and moments of inertias are increased. Therefore platforms
designed for heavy loads will exhibit a higher degree of coupling than the platform
designed for light loads.

The dynamic coupling is also a consequence of the motion of the platform, which
determines the velocity and acceleration of the connectors. In high speed applications the
connector velocity and acceleration increase and the coupling will be more significant. In
low speed applications, the connector velocity and acceleration are smaller and the
coupling caused by the tangential acceleration, Coriolis acceleration and centrifugal
acceleration may not be not an important factor. The gravitational acceleration will cause
coupling regardless of the motion of the platform and should be a concern for any type of

application.

5.7 Dynamic Model Validation

A major issue when modeling a dynamic system is to be able to determine whether or
not the model itself is correct. This requires a comparison with another method such as
Newton’s 2nd Law or Lagrange’s Equation. The equations of motion of the manipulator
will be verified using Newton’s 2nd Law.
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3.7.1 Equation of Motion for the mass M

The sum of forces acting on the mass M ¢ was determined in Section 4.6
Fe={F,-C(E-KLdL]s3-[Mcglk

The sum of forces must be equal to the mass M ¢ multiplied by its acceleration. The

acceleration vector, which was determined in Section 3.5, is given by

Ae=Es3+2E(wisy+wasy3)+E(aisa+taasys)+

E(2wiwa(s*s3)s2+wils) s3)s-(w]+wd)s;)
The force is equal to the product of the acceleration and the mass

Fas3 = CE+KLBL] 83+ Megk +MeEs3+2ME(wisy+w2sp3)+

[e ] o]
MeE(a1§z+az.s_23+2w1wz(§1-§3)§2+w%(§1 -53)§|-(wi+w§)§3)

This equation can be divided into a component parallel to the connector and a component

perpendicular to the connector. The parallel component is

Fa=C{E+KydL* Me{E + gs3,+ E((.ozl $3x- - (w%+w'§’));

This equation described the motion of the mass M ¢ along the connector. It is the same as

equation (61) which is the equation of motion derived by using Kane’s Method.
The component perpendicular to the connector generates an equilibrant force at the point
joining the connector with the platform. This will be covered in the verification of the

platform equations of motion.
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3.7.2 Equation of Motion for the mass M 4

The sum of forces acting on the mass M 4 was determined in Section 4.6
Fa=[-Cq(D-L) -Kgdg] s3-[Maglk

The sum of forces must be equal to the product of the mass and the acceleration. The

acceleration vector, which was determined in Section 3.5, is given by

Ag=Ds3+2D(wsp+w2s3)+D(as,+a2893)*

D(2w wals *s3)s2+wi(s; s3)s;-(0}+w3)ss)
The force is equal to the product of this acceleration and the mass

_cy(D-L) -Kdﬁd}§3 = Mygk+MgDs3+2M¢D(w sy +w2sp3)+

MaD(a1sy+a2s3+20 i wals s3)sa+wi(s; s3)s;-(w}+wl)ss)

As done in the previous section, this equation can be divided into a component parallel to

the connector and a component perpendicular to the connector. The parallel component is

(-Cd(D-L) -Kgdg] = My(D + gs3,+ D(w} s3,2- (0} +w}))]
This equation described the motion of the decoupling stage mass along the connector. It is
the same as equation (62) which is the equation of motion for the mass M ¢, derived using
Kane’s Method.

The component perpendicular to the connector generates an equilibrant force at the point
joining the connector with the platform. This will be covered in the verification of the

platform equations of motion.
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5.7.3_Equations of Motion of the Platform

The sum of forces on the platform is given by

6
Ep=Eext‘Mpg + Z FL
i=1
Where F ¢x; is the external force applied on the platform, and F _ is the force that each

connector applies to the platform. This last force can also be divided into two components
EL=F +F(

Where F’|_is the parallel force component which is applied by each of the connectors to the
platform along the direction of the connector, s 3. This force is generated by the coupling

stage stiffness and damper along with the decoupling damper as discussed in Section 4.6.

The expression for this force is given by

FL=lcaD-1)+ClH-L)+Kdeiss (73)

The perpendicular force F”| is applied by each of the connectors to the platform along a

direction perpendicular to the connector. This force is generated by the gravitational,
Coriolis, centrifugal and angular acceleration components acting on the rigid bodies of each
connector. The acceleration of any rigid body on the connector at a distance U from the
base, as shown in figure 5.5, is given by

A=gk+Us;+20(w sa*+wasy)+U(aiso*+azsys)+

U(2wiw2(s  s3)so+wils  syds-(wl+wilss) (74

The inertial force of a body is the product of its mass and acceleration. The inertial force of

the mass M on the connector is given by



Figure 5.5 - Platform and connector with Rigid Body

Fi=-MA=-M[gk+ Us3+20(w18,+w2s3)+* U(a1sy+a2823) -

MU (2w wa2(s  s3)sp+0ils °§3)§1-(w%+w§)§3f) (75)

The inertial torque of a body is generated by its angular velocity and acceleration
Ti=-ap'I'-wp " w2

where I” is the inertia dyadic of the body. Using the expressions for the inertia dyadic
given in equations (56), (57) and (58), the inertial torque can be written as

Ti=ly! a12°893 s+l @i2x803 (S3°wi2:+



Dix[ d2soiso+tMuxl@pxsyilssrwpi+
Nl airsslssvla/eizes;) sy wiz! (76)
The inertial force F | produces a torque about the base of the connector (see Figure 5.6 )

Us3x Fq

This torque together with the inertial torque T | will be balanced by the torque produced by

the force F” as shown in figures 5.5 and 5.6

Ls3x F| =(Us3x F1)+Ty

IN

connecton
with base

ted
<

Figure 5.6 - Forces and Torques acting on the connector
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The force F” can be determined by taking the vector product of s 3 and the above equation

—~—

"
}

L

{1

=s3x[{(Us3zx Ep)+T;;

1]

3X L§3X

which gives the following expression for E™

This force can be expanded by using to the expressions for the inertial force and torque,

equations (75) and (76)

" — MUr P

EL=!LgL 182282 % S23, 8230 *
EVISE 2 2 . :
: =+ -+ - -
l, L y L "
§2A“%J——{w1§z+w2§2355+

253, MU+ 2553, 53, (Iz-Ixx)

{ T 03103252‘;+

fS3x523x(MEZ+IKX'IE) (.0[2§23: (77)

The sum of forces on the platform, which is equal to the product of its acceleration and

mass, can now be written as

6 ] 6 "
Fext-Mpg + Z E, + Z F; =MA.

i=1 i=1

The above equation can be rewritten using all the rigid bodies of the connector
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(FLs3)i=FEexttMpAc+Mpg +

N
'

r } ;

p—— e

MeE +MdD +MbblL+ nxx323x +Ilns3x "SR E.+
‘1

ME> + M¢D? + Mpbl? + [l

2S5z | +
3 2823 |

6 [oin i D | |
i 2l MeEE+My4DD| i
Y (0isy * wasgsi]

6 2 2 2 |
253 (ME H;de * Mybl) Wiw2sy !+
‘1

4

i
Wipw2s8,2 i+ +
L 1 2—23i

" 2593x S3x (Hzz-Mxx )

6 ( 2 2 2 ,
| Sa. S M.E2 +MgD2 +Mpbl2) !
e emm e : @17 823 1 *

6
" 523y S3x (Ixx -M ) 2 |
; | 3 Wi~ 823 |

i 1
This is the same equation (69) obtained by using Kane’s Method.

The sum of torques about the platform center of gravity can be written in the form (see

figure 5.7)



where the T oy is the external torque applied to the platform and the right hand side of the

equation is the inertial torque of the platform. Using the expressions derived previously for

the forces F’1 and F™_, the above equation can be expanded to

6
Y (FLsos)i = Tet+a-Ip"+ wxIp'-w +

i=1

"glMcE+MgD+ Mypbl] -
)3 B Ld B-pc"Lszz§2+523z§23.1§i+
i=1 " :

r
i
)

| M.E2 + MgD?2 + Mpbl2 + Tlxx 59352 + N7z 53,2 i
L L o B

™o

i=1

Figure 5.7 - Connector Forces acting on the platform
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26: | MGE? + MyD? + Mpbl2 + Ty o

L L -

1=

pc* ®X2893 | +
-1

i i}FZ{MeEEi-MdDDJ
i=1 "

3 chxtwnsz+wz§23£gi+

1

|
Rp*wiwasy | +

“1

i [2s3x(MeE2 +MgD?2 + Mpbl?)
a L

Pt
6

2 -1 |
Z 523x53x[(JIlzz Ixx ) Epcxwlw2§2ffi+

i [ S3x S23x (MGE2+MygD2 + Mybl?)

3 Rpc*xwi”sx

6 - -
| $23x S3x ( HXX 'HZZi) R x 2 E
i w S 1
Z L =2pc 1 _23-‘i

i=1 "

This is the same as equation (71) which was derived using Kane’s Method. The validation
of the equations of motion is complete and it has been demonstrated that the same results

are obtained using two different formulations.

5.8 Summary
Kane’s Method has proven to be an effective formulation for obtaining the explicit
equations of motion for a parallel manipulator. This method is more effective for parallel
manipulators than Lagrange’s formulation. One of the main reasons is that setting up the
equations of motion with Lagrange requires several operations with the velocity and
displacement expressions as outlined in section 5.1{13, 26]. These expressions are rather
elaborate for parallel manipulators (see Section 3.4), as compared to serial manipulators for

which Lagrange has proven to an effective formulation technique. Kane’s Method uses the
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velocity expression for obtaining the velocity partial derivatives which was shown here to
be a simple task. This partial derivatives turn out to be the coefficients of the velocity
&quations.

Kane’s Method is similar to the Newton-Euler formulation since both methods require a
force and torque analysis. The main reason that Kane’s Method was used instead is that it
is a more systematic formulation, which uses the velocity and angular velocity partial
derivatives for eliminating the workless constraints. In the Newton-Euler formulation these
constraints have to be eliminated by combining equations, a non systematic process which
can prove to be difficult and time consuming. The Newton-Euler formulation was used
here to validate the equations of motion which have already been derived using Kane’s
Method. The results obtained using Kane’s Method offered the insight for setting up the
equations of motion with Newton-Euler, which saved a considerable amount of work.

This insight would not be available if the Newton-Euler formulation was used from the
outset.

This work proves that selection of the formulation method is very important
consideration for dynamic modeling. This selection is heavily influenced by the type of

kinematic chain the manipulator is based on (serial or parallel kinematic chain).



CHAPTER 6
DYNAMIC SIMULATION ALGORITHM

Once the dynamic model has been derived, a simulation algorithm can be developed.
The objective is to determine the required actuator forces, power and frequency response
for a given spatial parallel manipulator and the required task. Parameters such as
dimensions, platform mass, connector stiffness and transmission damping coefficients (see
Chapter 2 for more details on all the parameters) will be specified.

The first part of the simulation will determine the kinematic state of the connectors
(positions, velocities and accelerations) using the motion or task description of the
platform. The second part of the simulation will determine the forces and moments acting
on the system and will determine the required actuator response for the desired task.

6.1 Motion and Task Planning

There are different types of task that the manipulator can perform. The platform can be
required to carry a load or to counteract an external force such as those generated when
machining. In this case the external force and torque are specified along with the desired
output resultant force and torque. This is also known as force control. The platform can
also be required to move a body through a prescribed motion such as that of a flight
simulator. This type of task requires motion control. Another applications might require
the platform to operate in a combined or hybrid force/motion control mode. Polishing a
lens or machining a complex contour requires that the platform controls the contact forces
between the end effector and the workpiece while at the same time executing a given motion
profile.

Although more emphasis is given to the areas of motion and hybrid control, the

simulation algorithm is designed to use any of the mentioned tasks as the input.

128
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6.2 Inverse Kinematic Simulation Algorithm

The inverse kinematic analysis will be done in two parts. Firstly it is necessary to
determine the motion of the platform (location, velocity and acceleration) based on the
motion planning parameters. Secondly part of the inverse kinematic analysis will determine
the motion of each connector. Most of the equations used in this section have been derived
and discussed in detail in Chapter 3.

6.2.1 Platform Inverse Kinematics

Two basic platform motions (see Section 3.6) will be considered for the inverse
kinematic analysis. The first is a rectilinear motion and the second is a curvilinear motion.

For both cases the initial position of the centerpoint ¢ , C ,, and the initial orientation of the
platform, [R] ., will be specified. Using these initial quantities, the initial position of any

point on the platform can be determined by

Po=Co" {R]ogpc/m (D

where R pe/m is the position vector of point p with respect to centerpoint ¢ defined with

respect to the moving coordinate frame as explained in Section 3.2. This vectorisa

constant which is determined by the platform dimensions.

6.2.1.1 Rectilinear Motion
The parameters required to specify a rectilinear motion are the total displacement AS,

the axis of translation w ( see Figure 6.1 ) and the time period T (see Section 3.6). The

position, velocity and acceleration of any point p on the platform can be determined by

PO =Co [RioRpem" A3{1-cos(Tt)|w e)
Vp(®) = A3 Lsin( T w 3)
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Ap® = 83 (L) cos( T w @)

For this type of motion, the orientation of the platform remains constant and the rotation

matrix is not used.

6.2.1.2 Rotational Motion
The parameters required to specify a rotational motion are the total angular displacement

AB, the axis of rotation s, the distance r . from the centerpoint ¢ to the axis of rotation

('see Figure 6.2), and the time period T as mentioned in Section 3.6. The position,
velocity and acceleration of any point on the platform can be determined by

P=P,+Rpc (3)
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Figure 6.2 - Curvilinear Motion
Vp=(rc-Rpc)xw] (6)
Ap= wx{(rc-Rpc)xwi+(rc-Rpc)xa (7

where 8, w and g are the platform angular displacement, velocity and acceleration vectors

_ AB! . mt !
o) = 491 cos(T)Js ®)

=A8m i (mt)
Q(t)—ﬁ ;LSIH(T:)J;§ 9)

_A8xw?] mt)!
a()= g tcos(T)J;§ (10)

The relative position vector R pe » Which changes as the platform moves, is determined by

(REOEREEPC/[H (1D

Rpe
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where [R] , describes the initial orientation of the platform, R pe/m is the relative position

vector with respect to the moving coordinate frame, and [R] is the rotation matrix

sx2vsnb +cosH SxSyvsn@-s;sin@ sys,vsnB +sysind
SxSy vsnb +s,sin@ sy2vsn@ +cos®  sys,vsnB -sxsinb 1 (12)

SxSzvsnB -sysin@ sys,vsn +sysin® s,2vsnB +cosh

6.2.2 Connector Inverse Kinematics

The Pliicker line coordinates for each connector can be determined by using the

following equation

(13)

where P is determined using equation (2) or (5) depending on the type of motion ; and

B is the position of the connection with the base. The length of a connector is given by
L=[P-B| (14)

The velocity of point p on the connector can be determined using either equation (3) or

(6). The velocity of the prismatic joint in the connector can be determined by

V3=(Vps3)ss (15)

The angular velocity of the Hooke joint located at the base of the connector is given by

WpR=w+w?2 (16)

RLIEEIPY ()
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(18)

The acceleration of point p on the connector can be determined using either equation (4)

or (7). The acceleration of the prismatic joint in the connector can be determined by

(19)

As=(A%s3)s3

where A*p is given by

* 2 2
Ap=Ap-wi(s1x801)-03(82x842)-

2wis x(w2Sq+ V3s3) - 2w2s2xV3s, (20)

The angular acceleration of the Hooke joint located at the base of the connector is given by

A= +a2+wiw2 (S1x8,7) (21)

The angular accelerations a | and a 7 are given by

g|=(éﬂl—:§i)§1 (22)
*
ay=(AR82)5, 23)

6.3 Equations of Motion for the Manipulator

The equations of motion were derived in Chapter S. Since the system has 24 degrees

of freedom, the dynamic model must have 24 equations of motion. The dynamic behavior

of the platform is described by the following set of equations
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2(FLSS)i=;‘&.ext+_‘/&p+Sigr*ﬁtan*ﬁcor*ﬂcent (24)

where the dual vector S 3 contains the Pliicker line coordinates of each of the connectors.

The vector i’V\_ext , the external wrench, represents the forces and torques applied to the

platform from external sources such as the cutting forces generated in milling operations.

The platform inertial and gravitational wrench, _W_p , quantifies the forces and torques

generated by the gravitational acceleration, the angular velocity and the angular acceleration

of the platform

The connector gravitational wrench, ﬁ gr , quantifies the forces and torques applied to the

platform by the gravitational acceleration acting on the rigid bodies of the connector

6 .
& g M E+MyD +Mybl ] S |
We=Y | 3 5282 | ¢

[=

S oI M.E+MgD+Mpbl’ .
Z 8L Ve I:l b - 823,823 1 (24.b)
‘1

i=1 °

where S 2 and § 23 are the given by:

|y
N

i
X N

7]
N

] ~ v !
i Sm= g B (24.0)

=
B 1w

The connector tangential acceleration wrench, @ tan , describes the forces and torques



applied to the platform by the angular acceleration a 7 acting on the rigid bodies of the

connector
- 8 | M E2+MgD2? +Mpbl2 + My 5932+ Mpps32
ﬂm=.2l£ e d b - xx S 23x 2z S 3x al§25i+
{=
6 ]
| ME2+MyD2+Mpbl? + gy S
; l 3 0£2§231zi (24.d)

The connector Coriolis acceleration wrench, ;W_cor , quantifies the forces and torques

applied to the platform by the Coriolis acceleration acting on the rigid bodies of the

connector
S 2 M.EE+M4DD, ¢

1w1§"2+w2§23?5 (24.¢)
L Ji

Weor =
i=1
The connector centrifugal acceleration wrench, \_/&\’_w, , represents the forces and torques

applied to the platform by the centrifugal acceleration acting on the rigid bodies of the

connector

6 o) ) 2 ) i
| S3x S M.E- +MyD~ + Mpbl- n :
.W_cent=z 3x 23x( € - d b )wl'§23j,+

(253, (ME2 + MgD? + Mpbl?) 1 |
. L et

Mo

i=1

6 :
Z ! s3x (xx - z) w12S23? .
i L - ‘ii

i=
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o~

6 _
Z [Sz3x53x £Hu HXXI) (1)[(,0252:1]_ (24.f)
=1 1

i
The equation of motion for the mass M 4 is
S 2 2 2 b n2)l o |
MdLD+gs3z+le(s3x)--D(wl+w2),+Cd(D-L)+KdBd=O (25)

where the first time derivative of the length of the connector L is equal to the velocity of the

prismatic joint of the connector

The equation of motion for the mass M ¢ is
Fa=M, E+gsy,+ Eol(ss)?-Elo}+w3) +CE+K 13 (26)

The last six equations of motion can be obtained by using the auxiliary equations

derived in Chapter 4
FL = Cyg(D-L)+C(H-L)+ K5, 1))
KpdL = Co(H-L)+Kd, (28)

These auxiliary equations can be used eliminate the displacement d | from equation (26)

and relate the connector forces to the actuator forces. First use equation (28) to eliminate

the coupling stage displacement and velocity from equation (27)

FL=CalD-L)+K 5L

Now rearranging in terms of the displacement d
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KLdL =Fr-CdlD-1)

By substituting the above equaiion inio equation (26) and rearranging, the following

expression for the connector force F | is obtained
FL = Fa-CtE+Cd(D-L)+Me[E(w?i(l-(s3x)34)+w%) —E-gshE (29)
Which can also be written in terms of the actuator force
[ s o] ) 271\ . . .
Fa=Fp+Me| E+gs3,-E(w}{l-(s3)2)+w3) +CE-Cy(D-L)

This equation indicates that the actuator has not only has to produce the required connector

force, it also has to accelerate the mass M ¢ and work against the decoupling damper and the

internal friction of the actuator.

6.4 Development of the Dynamic Simulation Software

The objective of this algorithm is to determine the required actuator forces, power and
frequency response for a given spatial parallel manipulator performing a desired motion or
task. Parameters such as the dimensions, platform mass, connector stiffness and
transmission damping coefficients (see Chapter 2 for more details on all the parameters)
must be specified by the user. The numerical algorithm for the computer simulation of the

inverse dynamic behavior will be developed.

6.4.1 Static Solution

The initial or static conditions must be caiculated before the running the dynamic
simulation. The initial conditions consist of the position and orientation of the platform; the
length and orientation of each of the connectors; the position of the rigid bodies on each
connector; and the initial actuator forces. The initial position and orientation of the platform
are specified before running the simulation program, with this information the connector

lengths and orientations can be determined. The length of the fixed mass of the connector,
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bl , is a fixed length and is determined when designing the connectors. The initial
positions of the actuator and decoupling stage (as described by the displacements Eand D)
and the actuator forces can be determined by a static analysis of the manipulator.

The equations of motion can be used for the static analysis of the manipulator by simply
setting all the velocities and acceleration to zero (except of the gravitational acceleration).

The connector static forces can thus be calculated using equation which reduces to

F xt (0) [ Mpg |
x (')’ | (30)

f
| Text0)

+

L

Here F oxt (0) and T ¢t (0) are the static external force and torque vectors, which depend

on the desired task as outlined in Chapter 4. Equation (30) is a system of six scalar

equations that can be solved to determine the static connector forces F . The static actuator

displacement can be solved by using the static connector forces and equations (27) and (28)

= - - i [
E (LlLo 1w)+Kc+KL (31)

where 1 1o and | ¢ are the the free length of the K _ and K ¢ respectively. The decoupling

stage static displacement is given by

D=1d,-M£‘Ig(—z3L (32)

where 1 4o is the free length of K .. The static actuator forces can be determined by using

equation (29) with all the velocities set to zero
Fa = FL+Megss, (33)

For a dynamic simulation, the static solution is equivalent to the initial conditions when the

initial velocities and accelerations are very small.
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6.4.2 External Wrench

The expressions for the external forces and torques were derived in Section 4.2. For

the mirror poiishing task the external wrench is caiculated using

ir -Fo(Zm+
taZm>* (-Fq

i
L =

=)

(34)

ext=

=
e

where F ;, is the normal or contact force, u is the coefficient of friction, “a” is the distance

from the point of contact to the centerpoint of the platform, and t is the direction of travel.
For a rectilinear motion the axis of translation w is the direction of travel, for curvilinear

motion the direction of travel is given by

t=Zmp* s

The external wrench for machining is given by

R
i
!
i

@ext _ ; - Fcutting.t. (35)

1 aZm* (-Fcuttingt) ;

where F cutting is the cutting force.

6.4.3 Numerical Solution

The equations of motion are a set of nonlinear differential equations. The analytical
solutions for these type of equations can prove to be tedious and complex as well as the
implementation of the numerical solutions [28]. An alternate approach is to use some
approximate method which involves difference equations and to use small time steps.

One of these approaches is the Euler Method for numerically solving the differential
equations. This method involves calculating a new estimate for the highest order time
derivative based on previous values of the other derivatives. The new estimate for the
highest time derivative is then used to calculate new estimates for the lower order time

derivatives. Using the equation of motion for the decoupling stage, given by equation
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(25), the new estimate for the acceleration can be written as

’ 2 2 2 22
B _ My Doldt(wl,new"'wZ. new) - W7, pew (S 3x, newl) ~
new = My -

Mdgs3z, new ¥ Cd( Dold- Vs, new)+ Kdadd old

Mg (36)

New values are used for the angular velocities w | and w2, for the connector velocity V 3

and the line coordinates § 3 since these can be determined by the inverse kinematic analysis.

The use of the latest values will improve the estimate for the acceleration. Using this new
estimate for the acceleration, a new estimate for the velocity and displacement of the

decoupling stage can be obtained

Dpew = Dpew At + Dyig 37)
Dpew = Dpew At + Dgig (38)

where At is the time step or increment used in the numerical method. The size of the time

step selected must be 5 to 10 times smaller than the shortest event to be considered [29].
Using the equation of motion for the connector’s equivalent mass, given by equation (29),

the new estimate for the acceleration can be written as

B Faold- F1, old- Ct Eotd- Cd( Dold- V3, new) .
new — Me

[ Eold( "0;; new(1 -(s3x, ncw)z) + (’3%, newf) - 883z newJ (39)

Using this new estimate for the acceleration, a new estimate for the velocity and

displacement of the actuator can be obtained
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Epew = Enpew At + Eold 40)

Epew = l.-::new At +Eqg (41)

The new values for the connector forces F | can be determined by using equation (24)

Z(FL,newS3 new) extnew*wpnew"'wgrnew*'
i=1

Wian, new * Weor, new + W cent, new (42)

The six wrenches on the right hand side of this equation are given by

W i Mp(Aq, pew * 8 )
A% = 42.a
= b ’L X pew * Ip” +(‘-0new xIp" ‘—ouew)l ( )
. 6 | ! 3
= ‘ M.E +MyD + Mpbl | o
W new = Z g new = dDnew b $ 27 new S 2, new ;+
i-_—'l L new o1
6 3
[ gl McEpew + MgD + My bl ] 3 !
Z gl new Lfl new b J523z,uew§23s“ewji (42.b)
. 6 ( 2 ; ]
Wian, pew = Z Me EneW+h/{‘ane\V+Mbbl O, new S2,new ! +
i=l L new i1
6 [Myxs 2+ [y s 2 |
Z l Xx 9 23x, newL ZZ 9 3x, new ar, newSZ newi +
i=1" new .
6 ) i
Z i MCEECW+MdD%ew+Mbb12 * T a2 new§23 newf (42.c)
L L ew e S By
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Once the wrenches are calculated, the connector forces are determined by solving equation
(42) using a numerical solution for a system of linear equations [28].

The new estimate for the actuator force can be calculated with the equation (29)

Fanew = FL, new * Ct Epew- Cd( Dpew - V3, new) +MeEpew +

[ it L) . e "
MeL 853z new t Enew( wr, new(( S 3x, new)' - 1:) -w3, new) , (43)
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The required power output/input for each actuator can be calculated using the following
equation

Power new = Fanew Euew (44)

6.5 The Dynamic Simulation Software
Prior to executing the manipulator dynamic simulation software, the user has to provide
the motion and task planning parameters; the geometric parameters such as the base and
platform dimensions; and system parameters such as mass and moments of inertia, spring
constants and damping coefficients.
The simulation software was implemented by using the following steps
Part A - Static or Initial Position Solution - The system initial forces and connector location
are determined by
1- Calculate the static connector endpoint position using equation (2).
2- Calculate the static connector line coordinates and length using equations (13) and (14)
3- Calculate the static connector forces using equation (30).
4- Calculate the initial displacements E and D using equations (31) and (32).
5- Calculate the static actuator forces using equation (33).

Part B - Dynamic Solution: The actuator force requirements are determined based on the
desired motion and task. The initial time is set to t =0.

Part B.1 - Inverse Kinematics: The connector location, velocity and acceleration are
calculated using the motion planning parameters.
6- For rectilinear motion determine the connector end point position, velocity and
acceleration using equations (2), (3) and (4).
7- For curvilinear motion determine the connector end point position, velocity and
acceleration using equations (5) through (12).
8- Calculate the connector line coordinates and length using equations (13) and (14).

9- Calculate the connector velocity vector V 3 using equation (15).



144
10- Calculate the connector angular velocity vector w 17 using equations (16) to (18).
11- Calculate the connector acceleration vector A 3 using equation (19).
12- Calculate the connector angular acceleration vector a |2 using equations (20) to (23).

Part B.2 - Inverse Dynamics: The actuator force and power required to generate the desired
motion are calculated.
13- Calculate the new acceleration, velocity and displacement of decoupling stage using
equations (36) to (38).
14- Calculate the new acceleration, velocity and displacement of actuator using equations
(39) to (41).
15- Calculate the external wrench using equation (35).
16- Calculate the new connector forces using equations (42) and (42.a) through (42.e).
17- Calculate the new actuator forces using equation (43).
18- Calculate the actuator power requirements using equation (44).

19- Increase the the time to t =t + At, go to step 6.

The total simulation algorithm is outlined in Figure 6.3. This is the basis for the
dynamic simulation software developed using ANSI C [28, 30] as part of this research
project and will be further discussed in Chapter 7.
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CHAPTER 7
TESTING AND RESULTS

The dynamic simulation software allows the the designer to determine the actuator
requirements for a manipulator performing a desired task or motion. The first goal of
testing this software is to gain some understanding of the dynamic behavior of parallel
manipulators. As indicated in Chapter 5, section 5.6, the dynamic model can be written as:

o~

Z (FI§.3)i =ﬂext+.@p ‘*‘.@gr “'.th +i‘\’_cor + @cent

The last four terms of this equations describe the coupling effects between the connectors.

These terms can be grouped into an equivalent coupling wrench as:
_‘/&couple = @gr + _‘/‘_\“an + w/:cor + @oent

This coupling wrench is a function of the system geometry, the system parameters and the
desired motion or task to be implemented with the platform:

W couple = f; €((83, wiz 12 B E D, D,bl, L, Me, Mg My, e, Id", Ib" ;)
i
The actuator requirements (forces, power and frequency response) are a function of the
coupling wrench and therefore a function of the geometry, the system parameters such as
masses and spring constants, and the desired motion or task.
The test results will help to gain some understanding of the dynamic behavior of the
system. Since the equations of motion are a function of so many different parameters, it is

very difficult to asses the effect of all the possible parameter variations. This is why only
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some combinations will be tested, enough to understand the dynamics of the system and
help identify some relevant factors affecting such behavior.

The second objective is to demonstrate the uscfulness of this software as integral part of
a CAE tool for the design of parallel manipulators as mentioned in Section 1.4. By
evaluating the effect of different parameters on the dynamic behavior of the system, this
software will assist the designer in the process of developing a parallel manipulator.

7.1 System Geometrical Description

The system geometry is determined by the location of the connector base and end
points, which are a function of the platform and base dimensions, and the reference
location of the platform with respect to the base as mentioned in Section 3.3. The
connector base point B is the point at which the connector and the base are joined together
by a Hooke joint. The connector end point P is the the point at which the connector and the
platform are joined together by a spherical joint.

The geometry of the base and platform can be described in different ways [9, 10, 11]
such as the one shown in Figure 7.1 which describes a general six-six platform. The
designation six-six indicates that each base point is at different location, and each end point
is at different location (no common points). All the base points are on a circle of radius r p.

Bsg Bs

Figure 7.1 - Base and Platform Geometry
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Figure 7.2 - Orientation of the platform with respect to the base

The location of each base point is determined by the radius r and the angle 6 as shown in

Figure 7.1. A similar arrangement is used for each end point position on the platform. In

the case of the platform, the radius r and the angle ¢ are used. The location of the

platform with respect to the base is specified by the angle p as shown in Figure 7.2.

The geometry used for testing the dynamic simulation algorithm is shown in Figure 7.3.
This geometry has been proposed by [2, 16] and its simplifies the forward kinematic
analysis considerably. All the base and end points are located on the sides or vertices of
equilateral triangles. The geometry is determined by the dimension called SIDE and the
scaling factors BSIDE, TSCALE and TSIDESCALE as shown in Figure 7.4. The
connecting arrangement is shown in Figure 7.5. The reference or home position of the
platform with respect to the base is determined by locating the platform parallel to the base.
The centerpoint of the platform is at a distance H along the Z axis as shown in Figure 7.6.
This distance is a function of SIDE and the scaling factor HSCALE. The following values
for SIDE and the scaling factor are used for all the simulation test cases: SIDE=4 ft,
BSCALE = 1.05, TSIDESCALE =0.625 and TSCALE =0.5S5. The geometry of the
system will be varied by changing the reference position using the scaling factor HSCALE.
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Figure 7.3 - Manipulator Geometry used for testing
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Figure 7.4 - Base and platform geometry used for testing
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Figure 7.6 - Platform reference position
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In general all the base points are constrained to be in the same plane. An interesting
possibility is to locate the base points on different planes as shown in Figure 7.7. In this
particular arrangement, three base poinis are in one plane and the remaining threc basc
points are in another plane. For the test cases three of the base points will be in one plane,
the other three will be in parallel plane at a distance b as shown in Figure 7.8. The location
of the base points will be similar to the geometry used for when all the points are coplanar
as shown in Figure 7.8.

In summary, the geometric variations that will be used for the testing of the software
are changes of the platform reference height H and changes in the distance between base
point planes, b. The change of the values H and b will change the connector line

coordinates s 3 and the connector unit vectors s and § 23 as mentioned in Section 3.3.

This affects the actuator requirements since many of the terms of the equations of motion
are functions of these unit vectors. These variations are by no means the only possible
geometric variations, there are infinite combinations of geometric variations that can be
used. These tests are conducted to understand some of the relationships between the

geometric parameters and the dynamic behavior of the system.

7.2 System Parameters

As mentioned previously, the system parameters include the masses and the moment of
inertia of the platform and the connector rigid bodies; the spring constants of the coupling
stage, the decoupling stage and the connector itself; and the damping coefficients of the
coupling and decoupling stages (see Chapter 2). As in the case of the manipulator
geometry there are an infinite number of combinations of these parameters that can be used
for testing the dynamic simulation algorithm, but such wide range of tests is beyond the
scope of this project. The purpose here is to vary some of the system parameters in order
to understand their effects on the actuator requirements.
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Figure 7.8 - Location of base points in two parallel planes
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7.2.1 Inertial Parameters

The platform mass and moment of inertia are determined by modeling the platform asa
thin disk made out of aluminum with a radius of 1.5 ft and 0.5 inches thick. These
dimensions are in proportion with the dimensions of the base and platform selected. Using

this information, the inertial parameters of the platform are
Mp = 501Ibs; Ip=301Ibf-ft% Ipxx = Ipyy = 60 Ibf- ft>

The inertial parameters for the actuator and the decoupling stage damper present more
of a challenge to determine. The main reason is that these parameters depend on the
actuator dimensions and requirements which in turn depend on the resulits of the dynamic
simulation. This problem will be circumvented by making a conservative assumption. The
decoupling damper will be assumed to be solid steel cylinder of 2.5 inches in diameter and
8 inches long. The actuator moving mass and fixed mass will be assumed to be a solid
steel cylinder of 2.5 inches in diameter and 4 inches long. Using these assumptions, the

inertial parameters for these elements are

Me=Mp=7.51bs; b=lez=11bf-ft%; by =lexx =leyy =2 Ibf - ft-
Mg =151bs; [dz =2 Ibf - ft%; Idxx = [dyy =4 Ibf - ft*

One of the objectiires of using such conservative estimates is to obtain the worst case

actuator requirements.

1.2.2 Spring Constants and Damping Coefficients

The type of tasks used for the simulation tests do not involve high frequency
disturbances (see Section 2.5 ), therefore the decoupling stage will be deactivated. The
values used for the spring constant and the damping coefficient of decoupling stage are

= __lb_f_._. . = 00
Ca 0ft—sec > Ka
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Since the decoupling stage is deactivated, the decoupling stage mass does not change its
displacement D along the direction s 3. The decoupling stage is located at 1.25 ft from the
base ot the connector which is enough to accommodate the height, base and platform
dimensions.

The tasks used for testing do not require implicit force control, therefore the coupling
stage is also deactivated (see Section 2.5). The connector will also be assumed to be
infinitely rigid and the transmission will assumed to be frictionless. The reason for
neglecting the actuator/transmission friction is that upon further examination and some
initial results of the dynamic simulation, it was determined that the actuator model to be
incomplete. The main reason being that most actuators are not back drivable or present
very high resistance to externally imposed motions (specifically the hydraulic actuators).
More descriptive actuator models should be considered in future work.

The net effect of deactivating the coupling stage and making the connector extremely
stiff is that the velocity and acceleration of the actuator will be the same as the V3 and A 3

terms derived in Sections 3.4 and 3.5 respectively. The displacement E is then given by

E=L-1)

where 1, is the free length of K , which is in this case is assumed to be 1.25 ft long.

7.3 Motion and Task Planning for Testing
Two different types of motions or tasks are used for testing the dynamic simulation
software. The platform will be used in a machining process to support and move a 150 1b
workpiece. A full groove will be cut with a four tooth end mill as explained in Section
4.1.2. The cutting force is assumed to be 200 1bf and the workpiece is to be taken through
rectilinear and curvilinear motions as explained in Chapter 3, section 3.6.
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7.3.1 Rectilinear Motion

The first motion to be used for machining the workpiece is a rectilinear motion parallel

to the XY plane at a distance H from the base as shown in Figure 7.9, along the axis of

translation w which is at an angle 6 with the X axis as shown in Figure 7.10. The

platform starts moving from point C , moves a distance of AS along the direction of

- N

path

IS
=3
:
— Y

c+I%-- »---‘}---—l- C,

> Y
Figure 7.9 - Rectilinear Motion for machining
Y axis of
translation
w
0
> X

platform

Figure 7.10 - Axis of Translation for the Platform
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Figure 7.11 - Curvilinear Motion for Machining

motion in a period of time T and completes its motion at point C ;. The workpiece will be

machined throughout the complete motion.

7.3.2 Curvilinear Motion

The second motion to be used for machining the workpiece is a curvilinear motion in

the YZ plane. The radius of curvature r ¢ is 0.5 ft, the axis of rotation s is parallel to the X
axis and intersects the Z axis at a distance H + r from the base as shown in Figure 7.11.

The initial orientation of the platform is - 90°, and it rotates 180° in a period of time T to
end at a orientation of + 90°. The workpiece will be machined throughout the complete
motion and the cutting forces are tangent to the path at all times.

7.4 Test Cases, Results and Discussion

As mentioned before, there are many combinations of parameters that can be used when
testing the dynamic simulation software. One of the objectives of the testing is to gain
some insight of the dynamic behavior of the platform, not to test as many combinations of

parameters as possible. The effect of geometric variations will be explored by changing the
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height H and the distance b as discussed in section 7.1. The effect of variations in the
system parameters will be evaluated by increasing the mass and moment of inertia of the
connector rigid bodies. The effects of variations of the motion pianning parameters wiil be
examined by reducing the time period T required for completing the motion, and by
changing the type of motion (rectilinear and curvilinear) used.

The required actuator forces will be calculated for each test by the simulation program
and displayed. One important condition is that the actuator force requirements must not
exceed the maximum force capacity. When this happens, the system is operating in an
condition known as an actuator singularity and the desired motion cannot be produced by
the manipulator. The possibility of this condition happening will be monitored using the

actuator force index A which is determined by

r - 3
)\=1Fmax IF'i"IOO

Frmax
where F pay is the maximum force capacity of the actuators and F is the required actuator
force. The above equation is similar to the definition of some performance indices used in
the area of control theory [29]. The use of the force index A allows all the actuators of the
manipulator to be compared on the same dimensionless scale which might be somewhat
difficult by just using the actuator force plots. The force index simplifies identifying
actuator saturation; the smaller the force index, the closer the actuator is to being saturated.
This index also allows the designer to avoid overdesigning or underdesigning when

selecting the actuators.
The determinant of the Manipulator Jacobian [ J o ] is also an indicator of possible

actuator saturation. When the determinant is zero, the actuators cannot generate the desired
motion as discussed in Section 4.5 and will saturate. As the determinant increases in

magnitude the less likely the actuators will saturate in general. Since the determinant has
units of length 3 , it will be divided by the maximum value of the determinant to eliminate

the units. Therefore it will become a dimensionless indicator of actuator saturation for the
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complete manipulator. This will be a combined inidicator of the effectiveness of all the

actuators of the manipulator. This simplifies the task of comparing manipulator designs.

7.4.1 Test Cases with Geometric Variations

The first test cases involve a rectilinear motion of the platform as discussed in section
7.3.1. In the first group of tests the height of the platform was increased from 1 ftto 5 ft,
the distance b is zero and the time period T is 30 seconds. The results of these tests are
shown in Figure 7.12.

For the rectilinear motion it can be seen that as the height is increased there is a increase
in the force requirements for most of the actuators, although actuators S and 6 show a
reduction in force requirements. This is seen more clearly in the force index plots. This
suggests that the general force requirements increase with the height. The lower the height,

the greater the s 3x and s 3y components of each connector as shown in Figure 7.13. This

means that the horizontal force components are greater which are desirable for balancing the
effect of a horizontal external load, such as the cutting force. The disadvantage is that the
connectors will be closer to a configuration where will be partially working against other
connectors. The extreme case is when the height is close to zero. When two connectors
are totally opposite to each other, one of them is redundant.

As the height increases, the connectors will have greater vertical force components as
shown in Figure 7.14 and the possibility of having opposite connectors is virtually
eliminated. The disadvantage is that when the connectors have large vertical components
the platform will be become very weak in the horizontal plane and very large actuator forces
are required to balance an external horizontal load, such a the cutting force. Therefore the
platform height should not be increased too much. The effects of further increasing the
height of the platform in a rectilinear motion are shown in figure 7.15. It can be seen that
the actuator requirements increase as the height is increased. The definition of a what is
considered a low or high platform depends on the other factors such as the type of motion
and the type of external loads applied.
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Figure 7.14 - Platform at greater height
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The second test case uses the curvilinear motion described in section 7.3.2 and the
reference height of the platform is increased from 2 ft to 4 ft, the distance b is zero and the
timc period T is 15 seconds. The results of these tests are shown in Figure 7.17.

The effects of changing the height for the curvilinear motion are totally different from
the results obtained for the rectilinear motion. For the curvilinear motion as the height is
increased, the overall force requirements are lowered. The improvement is more noticeable
in actuators 2 and 3 when the platform is at the initial orientation of - 90° and the final
orientation of + 90°. The location of the platform close to the initial location is shown in
Figure 7.16. In this orientation the cutting force and the weight of the platform are pushing
the platform downwards. The greater height makes the connector vertical components
greater, which can then balance out the external and gravitational loads more effectively.

Figure 7.16 - Platform close to the initial position for the curvilinear motion
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Figure 7.17a - Effects of the platform height on the actuator forces, curvilinear motion
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The next set of tests consist of changing the distance b (as shown in figure 7.18) while
keeping the platform at a fixed height of 2 ft and the time period T equal to 30 seconds.
The resulis of the rectilinear and curvilinear motions are shown in Figures 7.19 and 7.2
respectively.

These plots indicate that the greater the distance b between the planes, the greater the
general actuator force requirements. The increase of the distance b increases the horizontal
force components for the connectors in the higher plane. This allows the platform to
balance the horizontal load with less force, but at the same time it locates the connectors in a
configuration where they are partially working against each other. The extreme case is
when the distance b is equal to the height H. In this case the three connectors are
completely horizontal and will be balancing the external load and partially working against
each other. The force indices change with the type of motion. For the rectilinear motion
the actuators 2, 4 and 6, which are not relocated by the factor b, have lower indices. For

the curvilinear motion the actuators 1, 3 and 5, which are relocated by the factor b, have

Platform

Figure 7.18 - Platform with base points in two parallel planes
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lower indices. This illustrates the fact that a much greater number of tests is required in
order to better understand the effects of geometric variations. The main reason for such
behavior is the complex relationship between the connector forces (and actuator forces), the
line coordinates and the geometry of the system which can be observed in the equations of

motion

6
Z (Fl§3)i=ﬂext+.wp + Weor + Wean + Weor + Weent

i=1

where the line coordinates are given by

The direction s 3 is a function of the position of the base points and the end points as
mentioned in Section 3.3. The relative position vector R p is a function of the dimensions
and the orientation of the platform. Therefore since the vectors s 3 and R pc are functions
of so many parameters, it is difficult to determine the effect on one parameter on the
behavior of the system. The great amount of combinations of geometric parameters makes
difficult to generalize the above observations. This is problem is further compounded by
other factors such as the type of external loads.

The effects of changing the axis of translation w for the rectilinear motion are shown in

Figure 7.21 and 7.22. This axis is determined by the value of the angle 6 as shown in

Figure 7.10. The values used are 6 = 0° (the X axis ), 30°, 60°, 90° ( the Y axis ), 120°

and 150°. The height used was 2 ft and the time period was set to 30 seconds. These
results indicate that the forces requirements change as the direction changes but no general
pattern is seen in these results. Although no pattern can be observed it is important to use
different direction of motion when designing a manipulator to establish the actuator force

requirements.
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7.4.2 Test Cases with Variations of the Direction of Motion

The effects of changing the axis of translation w for the rectilinear motion are shown in

Figure 7.21 and 7.22. This axis is determined by the value of the angle 6 as shown in

Figure 7.10. The values used are 6 = 0° (the X axis ), 30°, 60°, 90° ( the Y axis ), 120°

and 150°. The height used was 2 ft and the time period was set to 30 seconds. These
results indicate that the forces requirements change as the direction changes but no general
pattern is seen in these results. Although no pattern can be observed it is important to use
different direction of motion when designing a manipulator to establish the actuator force
requirements.

As mentioned previously, the magnitude of determinant of the Manipulator Jacobian
[ J m] is another way of checking for actuator saturation. It was used here to asses the
effects of changing the axis of translation w for rectilinear motions. The determinant is
calculated and shown in figure 7.23. Using this as an indicator, the best or most effective

directions of motion are 0 is equal to 30 © and 90 °. This is difficult to verify with the force

index plots since some of the indices improve at these angles and others decrease as shown
in Figures 7.21 and 7.22. Based on these results, it can be said that the determinant of the

[J m | may not be an accurate indicator of the effectiveness of the actuators.

One of the possible reasons for the disparity in the observations is that the determinant

is a combined or composite indicator which takes into account all the actuators while the
force index A is an indicator of the effectiveness of an individual actuator. Another

important consideration is that the determinant is used for calculating the connector forces
{FL} =[Jm]-l( @_ext + E’.p + @_gr + @_tan + @cor + _@cent)

Once the connector forces are known, the actuator forces can be determined using (see

Section 6.3 )

Fa=FL+Me E+gss,-E(w(l-(s3)%) +w3) +CE+ Co(D-1)
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It is clear that the actuator, in addition to producing the connector force F _, has to
accelerate the mass M ¢ and work against the decoupling damper and the internal friction of

the actuator. Therefore its is possible to have actuator saturation even if the connector force

F L is considerably low. The determinant is not capable of predicting such situations.

The advantage of using the determinant is that it is a single index that groups all the
actuators together. This simplifies the evaluation of the manipulator considerably when
compared to the use of the individual forces indices. More research is required in order to
correlate the value of the determinant and the effectiveness of the actuators.

The fourth set of tests were conducted using variations of the time period T. The
shorter the time period, the faster the platform moves. The results of the tests for the
rectilinear and curvilinear motions are shown in Figure 7.24 and 7.25 respectively. It can
be seen that the reduction of the time period form 30 seconds to 5 seconds does not
produce any noticeable changes in the force requirements. The reduction to a time period
of 1 second produces some changes of the force requirements, although not the dramatic
changes expected from a reduction by a factor of 30 of the time period.

The platform moves faster as the time period used is shorter, and the velocity and
acceleration of the connectors will increase. This will increase the magnitude of the
tangential, Coriolis and centrifugal coupling wrenches of the connectors since they are

functions of the kinematic state of the system among other things (see Section 5.6 )

6
Wian * Weor* Weenr = Y, £({ w12,212, E D, ... }i)

1

Since these wrenches are a function of the kinematic state, one would expect a
noticeable increase in the actuator force requirements as the platform moves faster. This
trend is not observed in the test results. One possible explanation is that the magnitudes of
the angular velocities and acceleration vectors are small for the motions tested. These

values are shown for the curvilinear motion in Figures 7.26 and 7.27.
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7.4.3 Variations in the Time Period

The fourth set of tests were conducted using variations of the time period T. The
shorter the time period, the faster the piatform moves. The resuits of the tests for the
rectilinear and curvilinear motions are shown in Figure 7.24 and 7.25 respectively. It can
be seen that the reduction of the time period form 30 seconds to 5 seconds does not
produce any noticeable changes in the force requirements. The reduction to a time period
of 1 second produces some changes of the force requirements, although not the dramatic
changes expected from a reduction by a factor of 30 of the time period.

The platform moves faster as the time period used is shorter, and the velocity and
acceleration of the connectors will increase. This will increase the magnitude of the
tangential, Coriolis and centrifugal coupling wrenches of the connectors since they are

functions of the kinematic state of the system among other things (see Section 5.6 )

6
Wian + Weor * Weent = Y, f(l o an ED, ... [i)

1
Since these wrenches are a function of the kinematic state, one would expect a

noticeable increase in the actuator force requirements as the platform moves faster. This
trend is not observed in the test results. One possible explanation is that the magnitudes of
the angular velocities and acceleration vectors are small for the motions tested. These
values are shown for the curvilinear motion in Figures 7.26 and 7.27. It can be noticed
that for the time periods of 15 and 5 seconds the angular velocities and accelerations are
less than 1 rad/sec and 1 rad/sec 2 respectively. It is only for a time period of 1 second that
these values become somewhat significant. Note that these are the magnitudes and the
signs are not included. The sign of the angular velocities and accelerations determined the
signs of some of the terms in the coupling wrench. Therefore the effect of an increase of
one angular acceleration might be canceled by the decrease of another angular acceleration.

Another factor to take into account how the values for the time periods and
displacements for actual applications compare to the values used for testing. The time
period of 1 second means that the platform is moving a average rate of 1200 in / min which
is higher than the feed rates possible with existing technology (< 1000 in / min) [25].
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7.4.4 Test Cases with Variations of Inertial Properties

The effects of the connector masses and moments of inertia on the dynamic behavior of
is explored in the last set of tests. The platform height is set to 2 ft, the distance b is zero
and the time period is 30 seconds. The masses and inertias are multiplied by a factor of 1,
3 and 5 ( indicated by the notation M x 1, Mx 3 and M x 5). The results of the rectilinear
and curvilinear motions are shown in Figures 7.28 and 7.29 respectively.

It can be seen that as the inertial properties are increased, the general actuator force
requirements increase. The greatest increases are seen for the actuators 2, 3, 5 and 6 where
the force requirements register more than a 100% increase. This suggests that the inertial
parameters have a significant effect on the dynamic behavior of the system. All the
coupling terms in the equations of motion are functions of these inertial parameters as
shown in Section 5.6. Since for the motions used for testing generate small values for the
connector angular velocity and acceleration vectors, the only numericaily significant
coupling term left is the gravitational wrench. This term is a function of the gravitational
acceleration and the geometry of the system. These results indicate that the gravitational
terms are relevant in the dynamic behavior of the system regardless of the speed of the
platform and should be considered when designing and controlling a parallel manipulator.

Once more these observations are based on some simple test cases, and in order to
study general trends much more testing is required. If the gravitational coupling is found to
a sole significant coupling factor, the manipulator can be designed to reduce this effect
through mass balancing.

7.5 Summary
These observations are base on a small group of tests. The equations of motion are
functions of a great set of factors ( see Section 5.6 ) that can be changed. This underlines
the great importance of more testing with different sets of geometric parameters, system
parameters, motions and tasks in order to carefully study the effects of coupling.
These results provide some insight to the dynamic behavior of a platform system and

how its is affected by different factors. Much more testing is required using different
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combinations of parameters. One of the useful aspects of these results is that it gives the
researcher some idea of the parameters that should be changed and analyzed such as the

connecior imasses and the relocation of the base points.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS
Although more work is needed in the area of dynamics of parallel manipulator, many
useful observations and recommendations have been obtained from this research which
constitutes a major step towards the development of the Computer Assisted Engineering

tool for the design and analysis of parallel manipulators.

8.1 Developing the Dynamic Model

The explicit equations of motion for the parallel manipulator have been determined and

used for developing a computer simulation of the dynamic behavior.

8.1.1 Selection of a Formulation Method

In this research Kane’s Method has been successfully applied in the development of the
explicit equations of motion for a parallel manipulator. The usefulness of a given
formulation method seems to be related to the type of kinematic chain upon which the
manipulator is based on. Lagrange’s Method has been used successfully for the modeling
serial manipulators, while not so for parallel manipulators.

Both the Newton-Euler formulation and Kane’s Method require explicit force and
torque expressions. These are obtained from free-body diagrams of each of the rigid
bodies of the system. For serial manipulators, the force and torque expressions can prove
to be difficult to obtain [7, 8, 9, 10]. Since the links or rigid bodies are in series, the
forces and torques are not a simple sum of the individual joint contributions. On the other
hand, the force and torque analysis is relatively simple for parallel manipulators. For the
parallel manipulators, the end effector force and torque is produced by all the connectors

working together.
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The Lagrange formulation, which does not need a force and torque analysis of the

system, requires explicit expressions for the velocity and position of each joint. These
expressions, which must be in terms of the sysiem generalized coordinates, are used for the
kinetic and potential energy expressions. For serial manipulators they are simple to obtain
since the motion of the links is additive [13, 14, 31]. On the other hand, the expressions
for a parallel manipulator, as shown in Sections 3.4 and 3.5, are very complicated. This
quickly complicates the derivation of the dynamic model as outlined in Section 5.1. This is
the main reason that the explicit equations of motion for parallel manipulators have not been
derived using Lagrange’s formulation which appears to be virtually impossible [8, 9].

Therefore the selection of the method is more than a choice of the analyst, it is greatly
influenced by the type of kinematic chain used in the manipulator. For serial manipulators
where the force and torque expression can become somewhat elaborate but the velocity and
position expression are relative simple to obtain, Lagrange’s formulation is better. For
parallel manipulators, where the force analysis is relatively simple compared to the position
and velocity analysis, Kane’'s Method works better.

8.1.2 Use of the Explicit Dynamic Model

The dynamic model or equations of motion of a manipulator can be used for the
forward and inverse dynamic analysis. Some understanding of the dynamic behavior can
be gained by using a computer simulation based on this model. This can be achieved
regardless if the explicit equations of motion are available. The great advantage of having
the explicit dynamic model is that general observations can be made without having torun a
great number of numerical simulations.

The coupling between the connectors is a good example of the usefulness of the explicit
equations of motion. This coupling is quoted as being negligible or that it can be corrected
using adaptive control systems [10, 11]. It may well be that the combination of
manipulator parameters and motions used did not cause serious coupling effects [10, 11].
On the contrary, the dynamic model derived in Chapter 5 indicates that for the general case
there is a high degree of coupling between the connectors of the system. This is caused by
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the gravitational, tangential, Coriolis and centrifugal accelerations of the connectors. The
numerical simulations of Chapter 7 indicate that for the test cases quoted the most
significant coupiing is caused by the gravitationai acceleration. it is conceivabie that future
applications will required faster platform motions in which the other coupling terms become
relevant and cannot be neglected as has been done previously {10, 11].

The explicit equations of motion allow the designer to select manipulator parameters
that can minimize or eliminate the coupling effects of the connectors which has thus far
been done for serial manipulators [13, 14].

Another important use of the explicit dynamic model is in the design of the control
system. The approach that has been used is to consider the coupling effects as uncertainties
or errors which can be minimized using control systems [10, 11]. This may well be
satisfactory when the coupling effects are minimal but not valid for fast motions with high
coupling effects. A more effective approach is to use the dynamic model to predict the
coupling effects and include these effects in the control commands to the actuators. This

will in general create a more precise system with a faster time of response [13, 14, 26].

8.2 Dvnamic Behavior of Parallel Manipulators

The results of Chapter 7 provide some understanding of the dynamic behavior and how
its affected by different variations of parameters.

The first observation that can be made is that the geometry has a great effect on the
dynamic behavior of the manipulator. Factors such as the reference height, the axis of
translation and the type of motion used clearly affect the actuator requirements. However
since there so many parameters it is difficult to establish any trend as shown in the tests of
Chapter 7 and more testing with different sets of parameters is recommended.

As mentioned before, the explicit equations of motion indicate the high degree of
coupling between the connectors. However, the motions used for testing did not create
significant coupling effects except for the gravitational coupling. Other coupling terms are
a function of the location and motion of the platform, while the gravitational coupling is
only a function of the location of the platform. If this is valid for great range of tests, a
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approximate dynamic model can be used

—— —
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This approximate model would neglect all the coupling terms except for the gravitational
coupling. This approximate model could be included in real time control system with
minimal computational overhead since the most time consuming terms to calculate are
omitted. It is important to recall that this is a useful approach only for motions where the
other coupling terms are not numerically significant ( see Section 6.5 ).

8.3 _Recommendations
This research is one of the first steps towards the ultimate goal of developing a design /
analysis tool for parallel manipulators. Much more work must be done before reaching
such goal.

8.3.1 Dynamic Modeling
The equations of motion of a manipulator can be written in what is known as the
standard form in which all the displacements, velocities and accelerations are written in

terms of the generalized coordinates and their time derivatives [13, 14]
F =[H(q)]§+q"[C(e)]q+[K(a)]q+G(a)

where F is the actuator force / torque vector; q =[q1,q1..] T is vector of the generalized

coordinates, [ H (q) ] is the manipulator equivalent inertia tensor, [ C (q) | is the damping,
Coriolis acceleration and centrifugal acceleration matrix, [ K (q) ] is the stiffness matrix;

and G (q) is the gravitational forces vector. The dynamic behavior of a manipulator can be
understood better by obtaining the inertia tensor [ H (q) | [13, 14]. In order to convert the
equations of motion derived in Chapter 5 to the standard form, all the angular velocity and

acceleration terms of the connectors must be written in terms of the platform coordinates,
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velocity and acceleration. This will involve a considerable amount of work because of the
length the expressions for the angular velocities and accelerations of the connectors ( see
Sections 3.4 and 3.5). Nevertheless is may be worth the effort since it will possibly
provide more insight of the dynamic behavior and indicate how to simplify the dynamics by

designing the manipulator.

8.3.2 Testing

More testing is required in order to make general statements about the dynamic behavior
of parallel manipulators. In order to do so, more work should be done in the area of
motion and task planning. Most of the motion planning for manipulators consist of the
path planning of a given point on the end effector [13, 32]. This is not sufficient for
planning the motion of a parallel manipulator where its orientation is also an important
factor. Therefore a mathematical description of actual tasks should be developed to be used
as part of the input for the dynamic simulation software.

A comparison of alternative platforms designed to perform the same motion or tasks is
an important issue. An actuator force index was used to compare the tests of Chapter 7
which is essentially a dimensionless performance index. This index indicates when an
individual actuator saturates but does not indicate for how long its saturates and does not
take into account the rest of the actuators. The designer has to compare all the force index
plots for one design with all the force index plots of a competing design in order to select
the best. Therefore there is a need for performance indices that can evaluate the combined
effect all of the actuators and can be used to quickly compare different designs in an
objective way. These indices could use factors such as power consumption and time of

saturation as indicators.
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It is highly desirable to simplify the equations of motion by redesigning the manipulator
or by using a different motion. If more testing indicates that the most significant coupiing
term is the gravitational coupling, then the manipulator can be redesigned to minimize it.
The gravitational coupling term, as derived in Chapter 5, is given by

(52132*'5232323)]

i

)6: [ ME+MyD+Mpbl ]
o~ | L

This is caused by the gravitational acceleration pulling the rigid bodies of the connector.
This term can be reduced by using a balancing mass, m, at a distance U below the base of

the connector as shown in Figure 8.1. The gravitational wrench can now be written as

— S [g[MeE+MgD+Mpbl-mU]

] L

!
i
!
i

(52252"'52325-23)
i=1

The main problem is how to select the mass m and the distance U to reduce or eliminate the
gravitational coupling. Fixing the mass, the distance U can be calculated by

- M.E+M4D+ Mpbl

U m

The limitation of this equation is that the displacement E and D are not constant. In order to
minimize the effects of the variations of E and D, the equation can be expressed in a
modified form

— McEgae+ MgDaye + Mpbl
m

U

where E 3ve and D ave are the average values of the displacements E and D.

One important consideration is that the balancing mass can only reduced the effects of
the gravitational coupling. The use of the balancing mass will increase the effects of the
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base of the
connector

Figure 8.1 - Connector with balancing mass.

tangential, Coriolis and centrifugal accelerations. Therefore it is important to determine if

these coupling effects are minor before using a balancing mass.

8.4 Summary
The following are the most important findings and recommendations stemming from this
research
1 - Kane’s Method is an efficient method for deriving the equations of motion for a parallel

manipulator.
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2 - The equations of motion indicate that there is a high degree of coupling between the

connectors. This coupling is caused by the gravitational, tangential, Coriolis,
cenirifugal accelerations acting upon the connectors.

3 - The initial results from the dynamic simulations indicate that for the test motions used
the most significant coupling is caused by gravity. The magnitude of the connector
velocity and acceleration vectors are relatively small for the motions tested.

4 - The explicit equations of motion are useful for designing a manipulator with an
improved or simplified dynamic behavior. One possibility is to use mass balancing to

minimize the effects of gravity of the connectors.



APPENDIX
KANE'S METHOD FOR DYNAMIC ANALYSIS

The objective of this document is to give the reader a basic idea of how Kane’s
Formulation or Method is used to obtain the equations of motion of a multibody system. It
is by no means a complete description of Kane’s method.

The equations of motion for the dynamic model for a system with “w” elements (bodies
and particles) and “n” degrees of freedom can be obtained by using the following equation:

j;l(m {E_] _EJ}) +J§l (aUk {I_] 'Ij})_oa k"1727°"’n (1)
This equation must be setup for each of the degrees of freedom. In order to obtain the
system’s dynamic model, expressions for the following terms for each body must be
determined:

oV ;
5-—1— , the velocity partial derivative of body "j" respect to the kth generalized speed

Uk
0w ; :
a—:‘j’—i , the angular velocity partial derivative of body "j"respect to the kth generalized speed

"o ”n_n

F ;, the resultant force vector acting on body "j" at a given point "c

nmen

T j, the resultant torque vector acting on body "j", about the point "c"

mwe " n

A ;, the acceleration vector of body "j" at a given point "c

m j, the mass of body j

m"on

W j , the angular velocity vector of body "

« j, the angular acceleration vector of body "j"

Ij", the inertia dyadic of body "j", about the point "c”
200
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1 Generalized Coordinate and Generalized Speeds

A Generalized Coordinate is a position or displacement variable used to describe a
degree of freedom. The set of Generalized Coordinates is not unique, more than one can
be used to describe the configuration of a system. The number of Generalized Coordinates
must be equal to the degrees of freedom of the system (n)

g= (qq, 92, --- Gr, -.- Gn ) = set of generalized coordinates

A Generalized Speed is a function of the the Generalized Coordinates and their first
time derivatives of the Generalized Coordinates. The Generalized Speeds are not unique,
more than one set of Generalized Speeds can be used to describe a system. The number of
Generalized Speeds must also be equal to the degrees of freedom of the system (n)

u= (ug, uy, ... ur,...up) = setof generalized speeds

The selection of a given set of Generalized Speeds and coordinates can simplify the
derivation of the equations of motion of a system. How to select a set that will simplify the
analysis is not immediately obvious, it is more a case of experience. This is illustrated in
Example 1.

Example 1 - Determine the degrees of freedom, the Generalized Coordinates and the
Generalized Speeds for the system shown in Figure 1.

Solution: The system has 2 degrees of freedom. The configuration of the system can be
completely described once the angular position of each link is specified. Different sets of
Generalized Coordinates (each must have two elements) can be used to describe the

system, some of them are

Setl=>q1=xa & Q@2=xp; Set2=qi=ya & Q@2=Yyb

Set3=q1=0] & =072 ; Setd=q1=01 & q2=01-02
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8,-6,

.

Figure 1 - System for Example 1

Different sets of Generalized Speeds (each must have two elements) can also be used to

describe the system, some of them are

dx, dxp dya dyb
1= =24 = — < =» = =
Set ui dt &U2 t ’ Set?2 uy dt &Uz dt
- u, =901 _d82 — .-981 _d6, do;
Set3 uq dar &uy= at ; Set4 ug dt &uqy= dt it

Any of the above sets can be used to define the Generalized Coordinates and the
Generalized Speeds ( for instance Set 1 of the Generalized Coordinates and set 4 of the
Generalized Speeds can be used ). Some of the sets will make the dynamic modeling easier
in terms of the work required to derive the model. How to select the optimal set of
Generalized Coordinates and speeds is mostly a matter of experience.

2 Velocity Partials and Angular Velocity Partials
The partial derivative of the velocity and the angular velocity are also known as the
partial velocity and the partial angular velocity respectively [27]. The use of the terms
“partial velocity” and “partial angular velocity” is confusing since it implies that these
quantities are velocities and they must have velocity units. This is not the case and it is

easier to call them the velocity partials and the angular velocity partials.
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Expressions for the velocity at a given point in the body (the translational velocity) and
the angular velocity of each body of the system must be determined in order to derive the
velocity and anguiar velocity partials. The velocities and anguiar veiocities wiil be
expressed in terms of the Generalized Coordinates and Generalized Speeds. The velocity
and the angular velocity of a given body can be written as a function of the Generalized
Coordinates, Generalized Speeds and time

Yi=f(qi,92,...qn;uj, Uz ...up;t) & Wi=h(q, q2,...qn; U1, U2, ...Ug 5 t)

In most cases, the velocity of a body is a function of the Generalized Coordinates and the
Generalized Speeds which are implicit functions of time. The velocity partial derivatives
and the angular velocity partial derivatives are obtained by taking the derivatives of the
velocity and angular velocity vectors respect to each Generalized Speed. It will be shown
that the velocity partials and the angular velocity partiais are simply the coefficients of the
Generalized Speeds in the expressions for the velocity and angular velocity vectors.
Example 2 illustrates how to determine the velocity partials and angular velocity partials for

a simple system as shown in Figure 1.

Example 2 - Determine the velocity and angular velocity partials for the system shown in
Figure 1. Solution :

i - Define the Generalized Coordinates - In order to describe the system, two Generalized
Coordinates are required since the system has two degrees of freedom. One possible

choice is to use the angle between each link and the positive X axis
q =01 & qu=02

it - Define the Generalized Speeds - Two Generalized Speeds are required, for which there
are different options. In this case the two following possible sets will be used for the
system

Set l:uyj=wisup=wn Set 2:uj=wi;up=wz-wi
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where w} and w» are the time derivatives of the Generalized Coordinates.

iii - Find an expression for the velocity vector and angular velocity vector of each body of
the system. These must be a function of the Generalized Speeds and Coordinates. The
velocity of each link of the system at a given point must be determined. Point “a” will be
used for link 1 and point “b” will be used for link 2

For the first set of Generalized Speeds, the velocities can be written as -

Vi=Lu (-sinB;i+cosb;j); wi=uk

Vo= Liu(-sin@;i+cos6j)+Lous(-sinfri+coshrj); wa=usk

The velocity partials and angular velocity partials can now be determined

oV ) ov
=l o1, (sin@;i +cos8j); —+ =

Ou duz

Vv oV .
AR =L; (-sin0; i +cosOyj); 7=2 — [, (-sinf2 i + cosba j)
Ou Ouy
6_@_1=k; 6___@1=0; a—Q;3=0; @—2=K

up 2 Ouj Cua

For the second set of Generalized Speeds, the velocities can be written as -

Vi=Liu;(-sinb;i+cosb j)

Vo=Liu(-sinB; i +cosb; j)+Lo(uy- up (-sinf>i+cosbs j)

wi=uk, wa2=(u;-ux)k
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The velocity partials and angular velocity partials for this set of Generalized Speeds are

ov, . . .. . .. 0¥y

—— =Ly (-sinB;i+cosb1]); — =

Ouq du?

ov

=2 L, (-sinB; i +cosB; j) + Lo (-sinB2 i + cos2 j )
Ouq

ov

=2 = L(sinBi- cosds j)

Ous

duj Odus Ouy usz

Note that the velocity and angular velocity partials do not have velocity units. The
velocity partial derivatives have length units if the Generalized Speed is an angular velocity;
and are dimensionless if the Generalized Speed is a translational velocity. The angular
velocity partial derivatives are dimensionless. The selection of the set of Generalized
Speeds will not affect the final form of the equations of motion. It will determine the
amount of work that the analyst has to do in order to set up the dynamic model. In this
problem the first set simplifies the expressions for the velocity partials which will also
simplify the amount of work required to obtain the equations of motion. The velocity of
each body can be expressed in terms of the Generalized Speeds and the velocity partials and
angular velocity partials

oV,
auk

n
Y= Z U
k=1
The velocity partials and the angular velocity partials can be thought of as the base vectors
in which the velocity of a body is expressed in. They are the directions in which the
instantaneous motion is taking place at a given moment. If the velocity of body j does not
depend on the rth Generalized Speed, the rth velocity partial of that body is zero.
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3 Resultant Forces & Resultant Torques

The resultant forces and torques acting upon each body j of the system must be
determined in order to obtain the equations of motion . It is very important that ail the
forces acting on a body be defined respect to a common point j. Although the point j for
each body can be arbitrarily selected, it is more useful to define this point at the center of
gravity of body j.

The resultant force and torque that act upon body j of the system can be written as

Fi=F+FE+Fg & LTj=T+Tj+1Lg

where F ¢j and T ¢; are the external forces and torques; F¢jand T ; are the contact forces
and torques; and F ¢ and T g are the field effect forces and torques.

The external forces and torques are all the inputs to the system that are generated by
actuators such as motors and hydraulic pistons; or by disturbances such as chattering in
milling and turning.

The contact or interaction forces are the forces and torques that are caused by the
interaction of body j with other adjacent bodies. These can be divided into two categories:
workless constraints and contributing forces. Noncontributing or workless constraint
forces do not increase or decrease the energy of the system since they act parallel to
directions along which there is no motion. A typical case is the normal force between a
body and the surface. The body is moving tangent to the surface and the contact force is
acting perpendicular to the surface, a direction in which there is no motion. These forces
are also known as reciprocal forces, constraint forces, or workless forces. Although they
can be included in the force expression without any loss of generality, it is not necessary to
include these forces (or torques) in the resultant force (or torque) expression because once
they are multiplied by the velocity partials and angular velocity partials (the base vectors for
the body’s motion) as required by equation (1) they will be eliminated.

The contributing interaction forces are generated between bodies that are connected by
nonrigid elements such as elastic springs and viscous dampers. They act along the
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direction of motion and will change the energy level of the system. Other connection forces
such as those produced by dry friction and nonlinear elastic elements can also exist between
two bodies. The force generated by these connections will be a function of ihe Generalized
Coordinates and/or the Generalized Speeds.

Field forces and torques are those forces and torques caused by the action of a force
field such as a magnetic force field or a gravitational field. Although the gravitational field
is the most common type, there are some case in which the magnetic field has a
considerable effect on a body such as in the case of magnetic bearings. The force or torque

generated by gravity is given by
Fg=-Mjge; TIg=(-Mjge) x(rjcg)

where e is the direction of the gravitational field, and r j/, is the distance from the center of

gravity to the point of reference. The torque caused by gravity is zero when the center of
gravity is selected as the reference point

The resultant force and torque acting on a rigid body will be determined for the system
of Example 3.

Example 3 - Determine the resultant forces and torques acting on the rigid body shown in
Figure 2.

Solution - Assume that friction between the body and the inclined plane is zero and that all
forces intersect the center of gravity of the rigid body.

i - Make a free body diagram for the rigid body as shown in Figure 3. There all types of
forces acting on the rigid body. There is an external force F, there is the effect of gravity,
there is a workless constraint acting normal to the inclined plane and there are contact forces
produced by the spring and the damper.

ii - Add up all the forces acting on the rigid body - Since all the forces intersect the center of
gravity, the resultant torque is zero. To simplify the force analysis, the forces will be
added in the t and n directions.



Figure 2 - Example of a system with interaction forces

Fg

"1
w
=

Figure 3 - Free-Body Diagram for example 3

Forces in the ¢ direction

Y F=(F+W)cos45°t -(Cx+Kx)t
Forces in the n direction

Y F=Fgn -(F+W)cos45°n

where W is the weight of the mass M.

208
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4 Resultant Inertial Forces and Resultant Inertial Torques

The resultant inertial force and torque acting on body j have are given by as

* s L] L]
Aj & Tj=-aj* Ij-wjxlj-;
the acceleration vector and angular acceleration vector of body j at point j must be
expressed as a function of the Generalized Coordinates, the Generalized Speeds and their
time derivatives. Once the Inertia Dyadic, the acceleration and angular acceleration vectors
of body j have been determined the resultant inertial force and torque can be easily

calculated using the above equation.

4.1 Inertia Dyadic

The inertia dyadic is an alternate way of describing the inertia of a body. This section
describes what is a dyad, a dyadic and how these can be used for describing the inertia of a
rigid body. A dyad is an operator that is formed by the juxtaposition of any given number
of vectors. As an example, given vectors A and B, the dyad A B is defined as

. Ax | | Bx | | Ax Il By |
A=| Ay |&B=! By | thedyad AB=| Ay || By |
L Az | | Bz | Az || By

Note that the dyad is neither a scalar product nor a vector product of the vectors involved,
these vectors are just grouped together. One of the properties of a dyad is that when the
scalar product of a dyad A B and a vector u is taken, another vector is always obtained.
The resultant vector depends of the order of the multiplication

y=ucAB ; w=ABeu wherey#w

A dyadic, Q”, is a sum of dyads
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The inertia of a rigid body can be described by using an inertia matrix or tensor [I]. This is
defined respect to a set of mutually perpendicular axes (such as nn |, n 2 & n 3 of Figure 4)

Ill [12 I13
(I53) = L.’.l 52 l23

i Lo L

One of the limitations of using the inertia matrix [ {23} is that it must be rederived if the
inertia of the body is to be described with respect to another set of axes (suchasna, np &
n . of Figure 4). A better way to describe the inertial properties of a rigid body is by using
the inertia dyadic I”. The dyadic I” can be defined in terms of the inertia matrix of the rigid

body, [I 123] (which is defined in terms of theaxesn|,n2 & n3),and theaxesn |, n2 &
nj

IP=1in;+1I2n2+1I3n3 (S1)

where I |, I2 & I3 are the columns of the inertia matrix [I 123]. This can also be written as

[ In Wnlx7i i-llz *!,irnzx: i I3 'ifn3xl
"= Iy i’nly‘-ri 122 | n2y |+ I3 || n3y
LIsp iunlz] L I3 n2z; (I33 .03z,

The inertia dyadic can be used to determine the elements of the inertia matrix, [Lapcl,

defined with respect to any set of axes (such as 5, np & n ¢ in figure 3)
(Iabcl=[nae I",npe I",nce I"]

This can be also written as
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n,

Figure 4 - Different sets of reference axes

Ic= nceI"’=nceliny+ncelona+nce I3zns

where I,,Ip & I are the columns of the inertia matrix [T gpcl.

A simple way to determine the inertia dyadic of a rigid body is by using the moment of
inertia about the principal axes of the body

Pj=Ixxnxnx+lyynyny+l n;n,;

where [ xx , [ yy & Iz are the principal moments of inertia; and n x , ny and n ; are unit

vectors describing the orientation of the principal axes of the rigid body. The inertia dyadic
for body j in terms of the principal axes can also be written in its expanded form as

rnxx]rnxx} lrnyx“!l’nyx“{ fnzx 1[ nzx‘}
I = [xx | DXy 1 Xy { + Iyyi nyy E; nyy ; + Izz% nzy ‘l nzy »
anJLanJ Ln)’z_‘l_ ny; | i NZz || NZgz
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Although the Inertia Dyadic is independent of the orientation of coordinate frame, it
depends on the location of the origin of the coordinate frame in a similar way as the inertia
tensor. The Theorem of Parallel Axes, which is used to determine the inertia tensor for any

origin location, also applies to Inertia Dyadics
Pja=Djc + Dac

where I”jj, is the Inertia Dyadic of body j about an arbitrary point a, I"jc is the Inertia
Dyadic of body j about its center of gravity c, and I”y/ is the change in Inertia Dyadic
produced by the change of reference point from c to a. This third term depends on the
relative position vector of point “a” with respect to c, and on the mass of body j.

Example 4 - Using the concept of Inertia Dyadic, determine the inertia matrix for the body
shown in Figure 5 respect to the XYZ frame. The principal moments of inertia are given
by (for a thin disk)

IN

base
frame

Y n,

Fs

Figure 5 - System for Example 4
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The orientation of the rigid body is described by the unit vectorsn |, n2andn3

[0.8661 [ 0353 1 i 0.353 |
n, !050' _llz=! 0.612 l 23-_—{-0.612 |

|

Lo ] L 0.707 | 0107 |

The principal axes and moments of inertia will be used to determine the Inertia Dyadic for
this body

!'0.866 ;"0.8661i [ -0.353 [-03531 | 0353 ';« 0.353
" i i
I" = Ix | 050 i 0.50 | * Lyy } 0.612 ,; 0.612 i + 1z | 0612 Ii -0.612 |
' ' |
Lo il o | L0707 1L 0707 | [ 0707 IL 0707

The inertia matrix or tensor respect to the XYZ frame can be determined by using the

following equation

dl=[X Y I"ZI]

Each column of the inertia matrix or tensor is given by

m1 L T
X «I"= (Ixx; 0 i*nifng!+Iy 0[naiiny] +Iz 0:*in3iing )
o , 0 , 0] _
Yo I'= (L 1 lngling] ~ Iyy) 1 o[nalinz] + 1z 1 )InsTns
01 07 0]
Z-0"=|Ixx 0 *ngiingi+Iy 0 *[n2l[na]+Iz 0 *in3lln;
1] L] L1

Substituting the values of the moments of inertia and the unit vectors n 1, n2 and n 3, the

inertia tensor respect to the XYZ frame is
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B © 0.281 -0.0514 0.0625
] = mRZ{- 0.0514 0.344 -0.108
0.0625 -0.108 0.375 |

The following example shows how to determine the inertial forces and torques, using
the definition given before and the Inertia Dyadic.
Example 5 - Determine the inertial forces and torques acting on each link in Figure 1
Solution
i - First determine the acceleration and angular acceleration vectors for both links. These
can be found by taking the time derivative of the velocity and angular velocity vectors

which were found in example 2

VYi=Ljiu;(-sinO;1i+cosBj)

Vao=Liuy(-sinB;i+cos6;j)+Lruy(-sinb2i+cosbsj)

The accelerations and angular accelerations for bodies 1 and 2 are

Acceleration of Body 1 at point a, and the angular acceleration of Body |

A1=L; %‘— (-sinGl i + cosBlj) +Lyup wy (-COSGI _i_ - sin@, j)
=du g
ai at =
Acceleration of Body 2 at point b, and the angular acceleration of Body 2

Ar=A |+ dedltz (-sinB, i + cosB» j) + Ly us wa (-cosO i - sinba j)

(3]

_duy
az="g k
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ii - Using the fact that the Generalized Speeds u ; and u; are the angular velocity of links |

and 2 respectively, the resuitant inertial forces calculated by using the expressions derived

above are

F' = Mj L ((sinf i - cosB; j) + ML; w2 (cosB i + sinB j)

F5 =-MyA |+ MLy a2 (sinf2i - cosBs j) + My Lp 6,2 (cosB i + sinda j)
2

iii - In the planar case the angular velocity and acceleration vectors are perpendicular to the

plane. The unit vectors n | and n 7 are in the plane and the unit vector n 3 is perpendicular

to the plane. Therefore the following scalar and vector products are zero
gj[nl=gaj [ny =wj*[ny=wj*(n,y = wj*xin3]=0
The first term of both inertial torques can be simplified to
@i b =Ix aj-(n)lng *Iyy aj [nalns+I5 aj-(nj3lns=Iza;k
The second term of each inertial torque can be simplified to
wix i cwj=Ix wj*[ndin] @j+Iy @j*naln, - wj+

[z w

j*[nsiinsl - wj=0
Therefore the resultant inertial torques for links 1 and 2 are

Ti=-a1lzk & T=-a2lnk
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6 _Steps for using Kane’s Method
In order to derive the dynamic model of a system using Kane’s Method, the following
steps must be completed

I - Determine the degrees of freedom of the system to be analyzed, n

2 - Select the Generalized Coordinates (must be an independent set which has n terms)

3 - Define the n Generalized Speeds for the system. These must functions of the
Generalized Coordinates and their first time derivatives.

4 - Write expressions for the velocity, angular velocity, acceleration and angular
acceleration of each body in the system in terms of the n Generalized Coordinates and the n
Generalized Speeds defined in steps 2 and 3.

5 - Obtain the velocity partials and angular velocity partials of the equations from step 4.

6 - Obtain the resultant force and torque acting on each body.

7 - Calculate the resultant inertial force and torque acting on each body.

8 - Setup the n equations of motion using equation (1)

These steps will be used in the examples that follow.
Example 6 - Obtain the dynamic model for the system shown in figure 6 using the steps

outlined above.

step 1 - The system has one degree of freedom.

step 2 - The displacement of mass M, x, will be used as the Generalized Coordinate.
step 3 - The first time derivative of x will be used as the Generalized Speed.

& U1=Q

q=x dt

step 4 - The angular velocity and angular acceleration are zero since the system only has

translational motion. The velocity and acceleration for the mass M are given by
du

V=U1i s A= —tli
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Figure 6 - System for example 6

step 5 - The angular velocity partial is zero since the angular velocity is zero. The velocity
partial derivative with respect to the Generalized Speed is

v . Jw

—— =1 _—_=0

6u1 aul

step 6 - The resultant torque for this system is zero since all the forces are assumed to go
through the center of gravity of the mass. The resultant force acting on the body is given
by

E_1=Fcos(55°)i-Kx1-C%—’:i +Fsin(55%j+Fnj ; T;=0

step 7 - The resultant inertial torque for this system is zero since the angular acceleration is

zero. The resultant inertial force acting on the body is given by

Fi=MEXi ; Ti=0
dt

step 8 - The equation of motion is given by equation (1)

oY x)_
E(EI'E 1)-0

Using the expressions for the velocity partial derivative, the resultant force and the inertial
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force derived in previous steps the equation of motion can be written as

Imeo

. . . ~dx : ccO . d2x
i {Fcos(55)i -Kxi-C®¥i + Fsin{55 +Tnj-M
|.( (55% dt (3375 lj) @2 ]

The equation of motion can be simplified to

0.5735F =M9X + cdx & Ky
dt2 dt

Notice that the workless contact force, Fy, is eliminated from the equation once the scalar
product is taken with the velocity partial derivative (which define the directions of motion).
For this example, the equation could be obtained with less effort using Newton’s 2nd Law.
For more complicated problems, Kane’s Method is more efficient for setting up the

dynamic model.

Example 7 - Obtain the dynamic model for the system shown in figure 7

For simplicity, the unit vectors t and n will be used to describe the forces and motion.
step 1 - Determine the degrees of freedom of the system: By inspection it can be seen that
this system has two degrees of freedom.

step 2 - Select the Generalized Coordinates : The displacements X, and X}, will be used as

the Generalized Coordinates. These are sufficient to locate all the parts of the system.

q1=X, & q2=Xp

step 3 - Define the n Generalized Speeds for the system: The following set of Generalized
Speeds will be used -
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Figure 7 - An inclined 2 DOF system

step 4 - The angular velocities and angular accelerations are zero there is only translational

motion. The velocities and accelerations for the masses M, & M, are given by

du dus du
Va= ; =ust+ s Aa="Llt; Ap==2t + =Lt
X a ul.t_ ’ Xb U_! ul!s 2 ¥:1 t ! sy Ab dt — dt -

step5 - Obtain the velocity partial derivatives and the angular velocity partial derivatives

a¥a=t;aza=0 . oy =£;a_‘£b
6u2

Ouy du, a

le=

b
ug

step 6 - Obtain the resultant force and torque acting on each body: Only the resultant forces
will be determined since there are no torques acting upon the system. There are
contributing interaction forces generated by the springs and viscous dampers acting on the

system, a workless constraint from the contact of the bodies with the inclined plane, an
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external force acting on M, and the gravitational field acting on both bodies.
The forces acting on body “a” are
external forces: Fea=0
contact forces: Fca=Cpu2zt -Cau 1t + Kp(Xp-Xa)t -KaXat + Fpann
field forces: Fa=0707M,gt -0.707M,gn

The resultant force acting of body “a” is

Fa=0707M,g(t -n)+Cpruzt -Caut +Kp(Xp-Xa)t -KaXat+Fpan

The forces acting on body “b” are
external forces: Fep=Ft
contact forces: Fap=-Cpurzt -Kp(Xp-Xa)t+Fppn
field forces: Fp=0707TMpgt -0.707Mpgn

The resultant force acting of body “b” is
Fpy=Ft+0707Mpgt -0.707Mpgn-Cpuzt -Kp(Xp-Xa)t +Fnpn

where F j, and F ;p are the workless contact forces between each body and the inclined

plane.

step 7 - Obtain the resultant inertial forces and torques: The resultant inertial torques are
zero since the system only has translational motion (angular velocities and accelerations are
Zero).

The resultant inertial force acting of body “a” and body “b” are

E*a=A.aMa=d7:Tl M,t = Xal\’fa.'i

* du, du1 7
= =(2 s B IMut =XpMpt
Fp= ApMyp (dt + dt) bt bMpt
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step 8 - Setup the equations of motion using (1)
for the first Generalized Coordinate and second Generalized Coordinates

Na(p, F) + Xo(F,-F}) =0

aul al.ll
Ya(p, £y + Xo(p,-F}) =0
Ou,y du,

The first term of the first equation of motion can be written as

0V,
cu 1

(Fa-F% =t-[Cpupt+Kp(Xa-Xp)t-Caust-KaXat]+

t-10.707M,gt-0.707Mugn + Fpan - X oMot |

The second term of the first equation of motion can be written as

“Xb(Fy-F}) = t-[Ft -Cpust-Kp(Xa-Xp)t+Fupn]+

.{0.707Mbgg-0.707Mbgg -XbeL;‘i

=

The first equation of motion is obtained by simplifying both terms and grouping
F=(Xp-0.707g)Mp +(Xa-0.707g)Ma+ Cauy +K, X,
The first term of the second equation of motion is zero since the velocity partial derivative is

zero. The second term of this second equation of motion is

v
“Lb(Fy-F) = t-[Ft -Chust-Kp(Xa-Xb)t+Fopn]+
au2

t+10.707Mpgt-0.707Mpgn - XpMpt



222
Simplifying, the second equation of motion can be written as
F=(X4-0.707g)Mu+Crua + Kn (Xa-Xp)

Note - The workless constraint forces F pa and F g, are eliminated by the scalar product of

the velocity partials. Therefore Kane’s Method provides a sure way to eliminate workless
constraints that other method such as Lagrange do not.
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